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Abstract. The effect of road excitation can be felt in moving vehicles and every
transported good are also exposed to this excitation. Products in transport must
withstand for shorter-longer periods mechanical conditions for which they were not
necessarily designed, if at all. To examine such cases, cost-effective numerical vibration
simulations are performed for verification purposes and shaking tests in laboratories
for verification and validation. While the success of virtual analysis, via finite element
methods or multi-body dynamic systems, depends largely on the conditions considered
by the modeling, results obtained in this way are biased in typically complex packaging
systems due to unclear mechanical constraints and nonlinear behavior of cushioning
materials. While in a model it is necessary to define geometric constraints, in reality,
goods may be able to move, slip, jump, etc. The nonlinear behavior of the common
packaging materials, e.g., corrugated paper, polyethylene, or polystyrene are also well-
known factors. In contrast, the performance of vibration tests requires the use of
expensive equipment, fortunately, many national and international standards support
their implementation. In the application of such procedures, shaking tests often
accompany the goal of packaging optimization, which seeks to balance between over- and
under-protection of the cargo. These standards typically generate stochastic, normally
distributed noises according to a given power spectral density function. Numerous
studies have shown, based on measurements under real conditions, that the vibration
acceleration of road-induced vibrations is stochastic, but their state is non-stationary
and non-Gaussian. In this sense, therefore, even well-defined standards allow only an
approximation of reality.
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Absztrakt. Az útgerjesztés hatása érezhető a mozgó járművekben, ugyanígy minden
szállított termék ki van téve ennek a dinamikus igénybevételnek. A szállított ter-
mékeknek rövidebb–hosszabb ideig olyan mechanikai körülményeknek kell ellenállniuk,
amelyekre nem feltétlenül tervezték őket, ha egyáltalán tervezett termékekről van szó.
Az ilyen esetek vizsgálatához költséghatékony numerikus szimulációkat végeznek el-
lenőrzés céljából és rázópróbákat verifikációs, validációs célokból. Bár a virtuális elemzés
sikere nagymértékben függ a modellezés által figyelembe vett körülményektől, az így
kapott eredmények a jellemzően összetett csomagolási rendszerek esetében torzítottak a
nem egyértelmű mechanikai kényszerek és a csomagolóanyagok nemlineáris viselkedése
miatt. Míg a modellben geometriai kényszereket kell meghatározni, a valóságban az
áruk mozoghatnak, csúszhatnak, ugrálhatnak stb. Az elterjedt csomagolóanyagok,
úgy mint a hullámpapír, a polietilén vagy a polisztirol nemlineáris viselkedése szintén
jól ismert tényező. Ezzel szemben a rezgésvizsgálatok elvégzése drága berendezések
használatát igényli, azonban nemzeti és nemzetközi szabványok támogatják ezek vé-
grehajtását. Az ilyen eljárások alkalmazásakor a rázóvizsgálatok gyakran kísérik a
csomagolás optimalizálásának célját, amely a túl- és alulvédelem közötti egyensúlyra
törekszik. Ezek a szabványok jellemzően sztochasztikus, normális eloszlású zajokat
generálnak egy adott teljesítményspektrum-sűrűség függvényében. Számos tanulmány,
valós körülmények között végzett mérések alapján, kimutatta, hogy az útgerjesztés
indukálta rezgésgyorsulás sztochasztikus, de állapotuk nem stacionárius és nem-gaussi
eloszlású. Ebben az értelemben tehát a szabványok is csak a valóság egy közelítését
teszik lehetővé.
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Chapter 1

Introduction

The current chapter positions the research and highlights possible use cases. In ad-
dition, some of the speculative ideas are supported by an earlier bibliographic study
discussing disciplines involved in the simulation of road vehicle vibrations. Notably,
the last table, Structure of the dissertation, in this chapter provides a compass for the
current dissertation. It excerpts the following chapters with corresponding theses and
publications of the author [1–10]. Apparently, the sources just cited (ibid.) also mean
that the Bibliography begins with the author’s publications.

1.1 Road vehicle vibrations

Every passenger, each transported cargo, and the vehicle transporting them are subjected
to road-induced vibrations—or as commonly referred to Road vehicle vibrations (RVV).
Simply put, a dynamic system is excited by the unevenness of road surfaces being
traveled on. We primarily want to reduce these dynamic effects, so one looks for some
form of active or passive vibration isolation. We are looking for this, because we want
to ensure more comfortable conditions for passengers, postpone the fatigue failure of
components, and keep the cargo intact until the destination.

There are analytical, numerical, and experimental approaches to tackle these prob-
lems, as suggested later by the bibliographic sample analysis in Table 1.1. In the design
phase of products, analytical and numerical investigations are in the foreground to verify
the effectiveness of vibration isolation solutions. Later, experimental approaches can be
implemented during the prototyping, validating the design. It is, therefore, essential to
use effective test signals, both in virtual and real forms. These are underlined mainly
by the form of a mathematical model about RVV. Standardized methods cannot and
should not be bypassed due to the expected conformity of production. However, at the
same time, additional investigations might be implemented in a complementary fashion,
increasing our trust in design, whether it can withstand real RVV.

A particular assumption in standardized Packaging vibration testing (PVT) protocols
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2 CHAPTER 1. INTRODUCTION

mathematically underpins these endeavors, summarized in Fig. 1.1. A measured RVV is
most likely to incur transient events, e.g., at humps, bumps, rail-crossings, rough roads,
etc. Also, the vibration intensity can vary at red-light stops, take-overs, and again on
bumpy roads. Furthermore, harmonic excitation might be different near the wheels
compared to cushioned surfaces. Many of the effects can be seen in Fig. 1.1.a) in the
time domain. It is well-known that a signal, x(t), can be investigated in the frequency
domain, X(ω), by Fourier transformation. The Continuous Fourier transform (CFT)
[11, p.7] is

X(ω) =
∫ +∞

−∞
x(t)e−iωtdt, (1.1)

with ω = 2πf denoting the angular frequency in [rad/sec]. Its discrete version, according
to the source just cited (ibid., p.368), the Discrete Fourier transform (DFT) can be
written as

X(k) =
N−1∑
n=0

x(n)e−i 2πk
N

n. (1.2)

The Power spectral density (PSD) [12]:

S(k) = 1
fsN

|X(k)|2 (1.3)

of the presented measured signal shows the density of the power in the stochastic signal
across a frequency range1 in pane c). A typical procedure is to join the PSD with a
uniformly distributed random phase followed by inverse Fourier transformation to get a
stochastic test signal back in the time domain, as in pane b). As a quick check, one
might subject the test signal again to Fourier transformation to confront the PSD curves
and witness barely any difference in the frequency domain between the actual and test
PSD. However, the signals in the time domain remained inherently different; namely,
the test signal lacks any intensity-variations or transients. That is, the test signal is
stationary and Gaussian, while real RVV is non-stationary and non-Gaussian. This
controversy motivated many researchers in the last few decades to propose enhanced
simulations, which mimic real-world phenomena in RVV.

1.2 Research on road vehicle vibrations

Not only PVT is fundamentally involved in studying RVV. The results from an earlier
bibliographic sample analysis [1] are restated below to paint the broad spectrum of
disciplines researching several aspects of the phenomena. In short, a sample consisting
of 121 documents was drawn from the Scopus [14] database on March 6th, 2020, with
the term constellation:

1The reader is referred to [12, 13] for a general treatment of spectrum scaling.
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A measured road vehicle vibration (M) and its PSD-based simulation (S)

100 200 300 400 500 600

t [s]

-5

0

5

a 
[m

/s
2
]

Measured signal, Ma)

100 200 300 400 500 600

t [s]

-2

0

2

a 
[m

/s
2
]

Simulated signal, Sb)

10
0

10
1

10
2

f [Hz]

10
-6

10
-5

10
-4

10
-3

10
-2

a
2
/f

 [
(m

/s
2
)2

/H
z]

PSDc)

M

S

Figure 1.1: Comparison of real-world RVV with its PSD-based simulation. Pane a)
shows the first 10 min of measurement A from Chapter 2, its Power spectral density
in pane c) via black solid line. The PSD of the measured signal, M, had been used to
simulate a random signal with uniformly distributed random phase in each iteration of
the inverse Fourier transform, for 600 s in total. The resulted synthesized signal, S, can
be seen in pane b) in the time domain, and its re-computed PSD in pane c) via gray
dashed line. The overlap of the two PSD profiles are to be noted, only the PSD of the
simulated signal resulted a 28-order smaller difference in the last bin.

packag* AND vibration AND road AND ( simulat* OR test* )

applied in the “article title, abstract and keywords” search field. The VOSviewer (1.6.14)
program [15] extracted the author- and index keywords. A threshold of two, on the
minimum number of occurrences yielded 238 from 1229 index keywords. The Pajek64
(5.08) software [16] constructed an adjacency matrix, g, from a network file, analyzed
further by

FindGraphCommunities[g]

built-in Wolfram Mathematica (12.0) [17] command producing six different clusters. In
each sub-cluster, the most weighted vertices (terms) are surveyed in Table 1.1. Even
from this heuristic and subjective analysis, many topics can be discovered.

Among others, they cover the serviceability statistics used in road profile surveys,
which are also research topics. Since road unevenness contributes to road-induced
vibration in vehicles, the Noise–vibration–harshness (NVH) circumstances of cars are
typically investigated. A unique vertex was vehicles after roads and streets in the
same cluster, showing that vehicles are highly discussed research objects. One could be
interested in understanding the dynamic behavior of vehicles, traveling on uneven road
surfaces, the riding qualities, or ride comfort. Most common techniques use Multibody
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simulation methods in the software package ADAMS. Examples of Finite element
modeling (FEM) and numerical simulation of analytical models also can be found. A
secondary meaning of packaging—as circuit packaging—is also present, straying not so
far from the topic. Different electronic components are subjected to vibrations during
transportation and their entire lifetime under operational conditions. In some cases,
fatigue prediction of similar structures is another research area investigated via FEM.
Regarding packages as transported goods, many publications describe the Measurement
and Analysis (MA) of RVV. A general and widely used measure to quantify RVV is its
description via Power spectral density function (PSD). Since MA is a cost-intensive and
time-consuming process, virtual simulations also received emphasis, for which multibody
dynamic simulation is an example. Operational modal analysis (OMA) might serve as
an appealing methodological framework if one cannot measure the excitation signals.
The other context of simulations conducted in laboratories has a root in standardized
methods of packaging testing. Transported goods are therefore equipped with protective
packaging to avoid damage. Examples of mathematical tools, such as machine learning
algorithms, wavelet transform, or Hilbert–Huang-transform, are also presented.

1.3 Main path analysis

Another sample is drawn from the Core collection of Web of Science [54] on March
15th, 2020, with the same terms applied in the “topic” field [3]. The list yielded 46
publications embracing 28 years. The CitNetExplorer (1.0.0) [55] is used for direct
citation analysis, which can use either external2 or internal citation scores. Internal
citation scores used herein, indicate the number of citations of a publication within
the citation network. Afterwards, 26 records were identified as core publications by
CitNetExplorer, being on view in Fig. 1.2. The direct citation network utilizing
a timeline-based approach estimates the knowledge transfer in the discipline by the
sample. Nooy et al. [56] describe the idea of citation networks as a system of channels
transferring information. A junction (article) in this system refers to many other
publications and likely synthesize knowledge, implying that knowledge flows through
them. Such a main channel in the current sample is visualized in Fig. 1.3. The short
thematic connections follow.

Fernando et al. (2019) [57] investigated the mechanical damage to bananas in
transport. A discrepancy in PSD curves has been noticed from the ASTM testing
standard. The authors just cited (id.) explained further that PSD peaks can be
influenced by the suspension characteristics, referring to a previous study by Fernando

2External citation scores indicate the total number of citations of a publication. Citations from all
publications in a bibliographic database are counted, including citations from publications outside the
citation network being analyzed [55]
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Table 1.1: Selected index keywords pro cluster. The reader is referred to [1] for further
details of the analysis.

C. Subject Method References

1 roads and streets computer simulation [18, 19]
dynamic response [20, 21]
finite element model [22]
mathematical models [19, 23]
multibody simulations [24]
statistical (...) [25, 26]
structural analysis [27]
transfer function [19, 28]

2 transportation damage detection [20]
materials testing [29]
measurement and analysis [30–33]
spectral density (...) [29–31, 34–36]
operational modal analysis [37]
simulation [18, 32, 37–40]

3 electronic components fatigue damage, forecasting [41]
industry standards, reliability [42]

4 pavements monitoring, road tests [43, 44]
vibration measurement, (...) [43–48]

5 protective packaging artificial intelligence (...) [49, 50]
indexing (of information) [51]
wavelet (...) [51]
signal processing [52]

6 customer satisfaction modal analysis [53]
C. cluster index
(...) synonyms or closely related terms
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Figure 1.2: The timeline-based network of direct citations among core publications.

Figure 1.3: Main path analysis in the sample.
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et al. (2018) [58]. Ibid. is a review article citing 113 records in order to discuss and
identify the main factors of vibrations and their implications on fruit quality. Transient
shocks are discussed as one of those critical factors, referring to Lepine et al. (2015) [38],
who reviews simulations of PVT. At transient event detection, the method from Lu et al.
(2008) [59] is mentioned among many others. Empirical studies are highlighted therein,
e.g., from Garcia-Romeu-Martinez et al. (2008) [32], which published Measurement and
Analysis (MA) results of truck transport in Spain as a function of payload, suspension,
and speed. Studies from different countries concerning vibration level measurements
are taken into account in the introduction, like a study conducted in India by Singh et
al. (2007) [60] or in North America by Singh et al. (1992) [61]. Both cited references
describe the measurement and analysis of vibrations of shipments during transport.

Packaging vibration testing has its roots in measurement and analysis of road
vehicle vibrations. Studies led to the recognition of RVV being non-stationary and
non-Gaussian stochastic processes, still many available vibration testing standards use
average PSD profiles leading to stationary Gaussian simulations. The limitation of
prior available testing standards had been addressed in different studies; hence, new
simulation methods had been established. From this indefinite point, the discipline has
reserved the two methodologies, such as RVV Measurement and Analysis and RVV
Synthesis.

1.4 Key factors and implications

One of the main factors is the adequate modeling of the excitation signal when examining
or designing such dynamic systems as above. Thus, it is advisable to take on in situ
measurements from specific roads in case of packaging optimization or to derive a
representative sample from many different routes when designing for unspecific travels.
The series of measurements may then be successfully fed to the following algorithms,
which are inherently data-driven solutions. It is also often a good practice to verify the
system in question already in the design phase. Once a tangible product or prototype
is available, the system should also be validated, e.g., in a shaker laboratory.

Neither the current work can offer guarantees into the future, some speculative ideas
might be worth mentioning here. The broad implications of ongoing research in studying
RVV can be fruitful in different scenarios. It may be aligned with the goals of packaging
material optimization or inherited in passenger comfort studies, to name a few of the
author’s favorite ideas. Hopefully, those endeavors will successfully contribute to more
cost-efficient solutions, considering the narrowing energy and material resources.

As acceleration measurement becomes sufficiently cost-effective, dynamic monitoring
systems will be created. Such systems, for instance hypothetically mandated in specific
transportation scenarios, could clarify the responsibility for inter-transport damages.
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Also, the route- or trajectory optimization can be complemented by evidence-based
aspects of road conditions. Perhaps, the most forward-pointing speculation builds
upon a possible big data system, where vibration data logging would be the default
configuration of future vehicles. At that point, the collected data would provide a
unified picture of the state of the national road networks, which would support the
related federal economic investments in road renovations.

1.5 Summary

The dissertation presents segmentation and simulation of road-induced vibration signals
through realizations of such stochastic processes to assess the spectral descriptors and
to offer an enhanced alternative simulation method beyond standard procedures. In this
sense, the research object is the Road vehicle vibration (RVV) aimed at defining a novel
algorithm for vibration testing. However, this motivation holds other use-cases, as well.
Beyond a direct dedication to Packaging vibration testing (PVT), the following methods
might also be beneficially implemented as virtual excitation signals in the numerical
analysis of the dynamic behaviors of road vehicles. Implicitly, fatigue simulations could
also benefit from current studies. The co-occurrence of author- and index keywords
from a bibliographic sample of 121 entries concluded [1] that various aspects of the
pavement–vehicle–package systems can be investigated. While this cannot supply an
exhaustive list, the concerned topics can be viewed from a higher perspective. While this
does not contribute to scientific claims, it offers the possibility to form the motivating
Proposition behind the dissertation.

Proposition. Based on the heterogeneous research topics of road vehicle vibration
studies, the lifetime of installed vehicle components and their design to take on loads
from amplitude- and frequency modulated excitation, as well as, the avoidance of
aversion in passenger comfort, and the vibration protection of transported loads are
central research subjects. Instead of studying the individual subsystems of the road–
vehicle–cargo system, it can be imperative to establish a standardized methodology,
since the final source of excitation is itself the road-induced vibration. ■ Ref.: [1, 3]

1.6 Dissertation structure

Current dissertation is excerpted in Table 1.2. Segmentation and Simulation are
discussed in two different chapters since the introduced methods are designed in a
modular manner, i.e., a simulation can use any of the segmentation methods. Conversely,
the segmentation techniques can be used independently of simulation for their own
purpose.
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Table 1.2: Structure of the dissertation.

Chapter Objective Methodology T.a P.b

Introduction Accommodation of
current work in a
broad landscape.

Mathematical motivation is followed
by bibliographic analysis.

0. [1,
3]

Spectral
non-
stationarity

Technical introduc-
tion and discussion
on non-stationarity
in the frequency
domain.

Spectral moments of the short-time
Fourier transform of three measure-
ments are segmented by a CUSUM
approach. Reverse arrangements tests
of spectral moments supply additional
support on the non-stationary nature.

1. [4]

Analysis of
prior algo-
rithms

Analysis of prior
event detection algo-
rithms in packaging
vibration testing.

Previously introduced event detection
algorithms in packaging vibration test-
ing are analyzed by process flow-
charts.

2. [5]

Development
of segmen-
tations

Establishment of Sta-
tistical spectrogram
segmentation.

Time-frequency domain of road vehi-
cle vibration is segmented by unpaired-
and paired t-tests, as well as the
CUSUM approach.

3. [6,
7,
9]

Calibration
of segmen-
tations

Verification of the seg-
mentation methods.

The calibration utilizes Receiver oper-
ating characteristics accompanied by
Segment length distributions.

4. [8]

Simulation Development and ver-
ification of the simu-
lation method

Segmentation and simulation are intro-
duced in two loops: first, one measure-
ment is simulated three times; second,
three series are simulated one times.

5. [10]

Clustering
spectrums

An approach for hier-
archical clustering of
RVV spectrums.

Different thresholds for the distribu-
tion of distances from dendrograms are
used to find the separating heights and
a new cluster validation index is pro-
posed.

6. [2]

Summary Reiteration on main
thoughts and mile-
stones.

A cohesive review depicts the path
among theses.

- -

a Theses in English, where 0 denotes the Proposition above.
b Corresponding publications.
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Chapter 2

Spectral non-stationarity

Road-induced vibrations are in the scope of various environmental testing protocols,
e.g., for Packaging vibration testing (PVT) purposes. This field matures with well-
understood methods for analyzing amplitude-type non-stationarity (NS) in Road vehicle
vibrations (RVV). Albeit frequency-type NS is well known, only suggestions are provided
for processing the phenomenon in PVT. Both types of NS can be jointly investigated
in the time-frequency domain; thus, the current study initiates the investigation of
Spectral non-stationarities (SNS) in RVV. Three vibration series were recorded from
118 km traveled distance supplying an empirical insight.

2.1 Introduction

Statistics, econometrics, and acoustics are typically concerned with the challenge of time
series’ stationarity. It may be impractical to indulge in a comprehensive listing; instead,
the current chapter discusses the results in the context of Packaging vibration testing.
The discipline of PVT is fundamentally involved with non-stationarity present in RVV.
Scholars have presented various methods accounting for amplitude-type NS. Albeit
the phenomenon of frequency-type or spectral non-stationarities is pointed out, mostly
suggestions are provided. Therefore, the current article presents an empirical validation
of the presence of SNS in RVV obtained by three measurements in a passenger car,
such as H0 : SNS does not exist in RVV;

HA : SNS exist in RVV.
(2.1)

It is assumed under H0 that spectral moments of the measured RVV are stationary
over time. The reverse arrangements test (RA) is used to assess the null hypothesis,
and the study is augmented by changepoint detection (CpD).

A stochastic process is said to be stationary in the strong sense if its unconditional
joint probability distribution does not change when shifted in time [62]. On the other

11
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hand, the exact process is said to be stationary in the wide sense if its mean and
auto-covariance do not vary with respect to time. Simply put, if the mean and Auto-
correlation function (ACF) of a stochastic process is time-invariant, the process is weakly
stationary; and the process is strictly stationary if all moments are time-independent
[63, p.74].

Parametric models frequently used for stationarity testing cover: the augmented
Dickey and Fuller test for a unit root [64], the KPSS test [65], the Leybourne and
McCabe stationarity test [66] and the Phillips and Perron test for one unit root [67].
The above tests, however, rely on model assumptions in a form of auto-regressive
integrated moving average (ARIMA) processes. Therefore, in lack of a specific model to
be evaluated, one might turn toward alternative solutions. A semi-parametric analysis
is the variance ratio (VR) test for random walk, originally suggested in [68]. The VR
tests the random walk hypothesis against stationary alternatives [69].

Non-parametric methods also devoted for stationarity problems include the runs
test [70, p.52], the reverse arrangements (RA) test [11, p.97] and the modified RA test
[71]. The three non-parametric tests can show inconsistencies, as discussed later.

The current study suggests the changepoint detection in spectral descriptors from
the time-frequency domain of recordings to strengthen the investigation of stationarity.
Control charts introduced in [72] are typical examples in manufacturing to monitor and
control capable processes. Statistical process control (SPC) can be enhanced by CpD.
While SPC can be updated at each incoming sample, CpD can be performed once all
data points are collected. SPC detects abnormal observations and major changes, but
CpD can also find minor changes and controls the change-wise error rate [73].

The establishment of CpD can be contributed to Page [74–76], who developed a test
for a change in a parameter occurring at an unknown point. The setup of the problem
consists of independent observations xn for n = 1, . . . , N ordered in time, incurring a
changepoint at n = m. The procedure investigates whether all the observations are from
the same population with the distribution function F (x|θ), i.e., under the alternative
xn=1,...,m are from F (x|θ) and xn=m+1,...,N come from F (x|θ′)(θ = θ′). The cumulative
sum (CUSUM) schemes are further discussed in Section 2.2.5, which are commonly
sharpened by resampling methods. In short, the probability of the changepoint’s actual
existence can be assessed by a corresponding p-value from a resampling technique.

2.2 Materials and methods

The current section presents first the details of experiments and the pre-processing of
the recorded vibration series. It is accompanied by introducing the considered spectral
descriptors, the RA test, and the CpD—the latter including a permutation resampling
method.
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2.2.1 Experimental

Three measurements are recorded on routes A,B,C reported in Fig. 2.1. Capitals denote
the experiments, and lower-case letters signify sub-figures throughout the chapter.
Common factors are the passenger car (Suzuki Swift Sedan 1.3 GLX year 2002), the
personnel (one chauffeur and one experimenter ∼ 150 kg in total), the GPS position
recorder (Columbus P1, fs = 1 Hz), the DC MEMS accelerometer (Recovib Tiny 15G,
fs = 1024 Hz, effective bandwidth 250 Hz). The accelerometer’s placements are: A) in
the coin toss attached with thick double-sided tape, B) on the right-hand side upper
plane of the cockpit attached with thin double-sided tape, and C) in the trunk on the
right-hand side attached to the chassis with magnets. The traveled distances are: A)
35.50, B) 29.88, and C) 52.53 km, respectively.

2.2.2 Preprocessing

The current method relies on the short-time Fourier transform (STFT) with one-sec
non-overlapping Boxcar windows yielding equidistant 1 Hz and 1 sec resolution. The
power spectral densities (PSD) in Fig. 2.1.d) are given up to the Nyquist frequencies. In
other cases, STFT spectrograms are band-limited to [1, 250] Hz with an ideal numerical
band-pass filter. Fig. 2.2 depict only [1,175] Hz intervals for further readability.

2.2.3 Spectral moments

The first four spectral moments are considered for RA test and CpD. These are signified
by µi for i = 1, 2, 3, 4, respectively the spectral centroid, -spread, -skewness and -kurtosis
[77, p.371, 281, 299, 317] respectively. The frequency-weighted sum of sk spectral values
normalized by the unweighted sum is the spectral centroid:

µ1 =
∑b2

k=b1 fksk∑b2
k=b1 sk

, (2.2)

where fk is the frequency in Hz corresponding to bin k. The spectral centroid is
calculated between the band borders b1 and b2. It is used in music interpretation and
genre identification, as a brightness measure [78]. The spectral spread is defined as
the standard deviation across the spectral centroid which stands for the spectrum’s
instantaneous bandwidth

µ2 =

√√√√∑b2
k=b1(fk − µ1)2sk∑b2

k=b1 sk

, (2.3)

showing the most dominant tone. The spread, widens as the tones diverge and narrows
as they converge.
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Figure 2.1: A,B,C measurements per columns. Each measurement is accompanied per
rows by a) place of accelerometer, b) GPS coordinates, stops marked by (×), c) vertical
acceleration with symbolization of stops (× on gray intervals), and e) power spectral
density: average (solid), 25th, 75th percentiles (dashed), max-min envelopes (dotted)
over time. Note that 75th percentiles are likely to overlap with averages.
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Spectral skewness is a metric that calculates symmetry around the centroid

µ3 =
∑b2

k=b1(fk − µ1)3sk

µ3
2

∑b2
k=b1 sk

. (2.4)

Spectral skewness can discern the articulation point [34], showing the relative frequency
of higher and lower harmonics in harmonic signals. The spectral kurtosis is a measure
of the spectrum’s flatness (or non-Gaussianity) around the centroid

µ4 =
∑b2

k=b1(fk − µ1)4sk

µ4
2

∑b2
k=b1 sk

, (2.5)

indicating the peakedness of a spectrum. Therefore, an increasing white noise on tonal
components yield a decreasing kurtosis, indicating a spectrum with less peaky character.
Other frequency domain measures also exists like entropy, flatness, crest, flux, slope,
decrease and roll-off point, discussed in [4]. However, let us note that higher order
moments above the 4th moment are not given.

2.2.4 Reverse arrangements test

The RA test [11, p.97] is a non-parametric test, not assuming any underlying distribution,
trend, or model. It evaluates a sequence of ordered data obtained from independent
observations of the same random variable by deciding if the observations undergo
a significant trend. The n-th reverse arrangement An is the number of times that
xn > xm for n < m given a sequence of N observed values of a random variable, xn for
n = 1, . . . , N . Then, An is summed to get the total number of reverse arrangements,
A = ∑N−1

n=1 An. Given xn is a collection of N independent observations of the same
random variable, A is a random variable with the mean of

µA = N
N − 1

4 , (2.6)

and variance
σ2

A = N(N − 1)2N + 5
72 . (2.7)

Then, A is expected to be above or below of µA when an increasing or a decreasing
trend underlies the data, respectively. Albeit tabulated values of A is available, the
tendency to normality is extremely rapid for N ≥ 14 and

z = A − µA

σA

(2.8)
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approximately follows the standard normal distribution.
The z-value is used to reject H0, thus the Eq. 2.1 can be written asH0 : µA = 0;

HA : µA ̸= 0.
(2.9)

2.2.5 Changepoint detection

The method is individually set up in Matlab based on the work presented in [73]. The
CpD is applied here on x = xn = µi, such as:

Sn =
N∑

n=1
(xn − x) (2.10)

where
x = 1

N

N∑
n=1

xn, (2.11)

that is the cumulative sum of differences between xn and its total mean, x, is computed.
The extremum Ŝn yields a candidate changepoint at µi,m and the permutation loop
decides upon the significance1. Each reference set comprises R = 104 permutation
(resampling without replacement) and an α = 0.05 significance limit is chosen for
demarcation. A difference compared to [73] emanates from using the same Sn statistic
in Eq. 2.10 at each permutation, instead of max Sn − min Sn. Given a significant
changepoint µi,m∗ , the series µi is divided into two parts: n = 1, . . . , m∗ and m∗ +
1, . . . , N . Both sections are submitted to the same changepoint-detection algorithm
until no more changepoint is found.

The cardinality of significant changepoints per the i-th spectral moment is symbolized
by γi = #{m∗}. The total number of unique significant changepoints for the set of µi is

Γ = #
{ 4⋃

i=1
γi

}
. (2.12)

Finally, the temporal density of changepoints is proposed:

Γ◦ = Γ
T

, (2.13)

where T is the length of the recording. The following reporting scheme is recommended
for RVV analysis accommodating the method in large-scale experiments and cross-
validation studies:

Γ◦ = Γ◦(µi, R, α, ∆t, ∆f) [1/s] , (2.14)

1The interested reader is referred to [79] for a comprehensive overview of resampling methods.
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with ∆t, ∆f time- and frequency resolution of the DFT-based spectrogram, respectively.

2.3 Results

The results supported the investigated alternative hypothesis in Eq. 2.1. The spectral
moments µ

(j)
i for i = 1, 2, 3, 4 in measurements j = A, B, C show at least cv

(
µC

2

)
=

5.41% and at most cv
(
µC

3

)
= −461.32% coefficient of variations. The null hypothesis

of stationarity in Eq. 2.9 is rejected in favor of the alternative hypothesis by the RA
test at the α = 0.05 significance level in all cases but µA

1 , µA
3 , and µC

4 . Therefore,
measurements A,B,C can undergo spectral non-stationarity since at least one of four
spectral moments per experiment is non-stationary. It is worth recalling that SNS is
present regardless of the accelerometer’s fixture and position.

While RA tests confirmed SNS in most cases, the CpD delivers further insights into
the non-stationarity since no changepoints would be expected under H0. First, let us
not consider the spatial- or temporal distribution of changepoints in Fig. 2.1. Then,
2.65, 3.35, 2.46 [1/km] unique changepoints per kilometer for routes A,B,C show that
roughly each traveled kilometer incurred two to three different spectral characteristics,
on average.

Here, Γ◦(A) = 5.44 · 10−2, Γ◦(B) = 5.29 · 10−2 and Γ◦(C) = 5.11 · 10−2 1/s for
({µ1, µ2, µ3, µ4}, R = 104, α = 0.05, ∆t = 1s, ∆f = 1Hz) are found.

Changepoints’ temporal density is lower than spatial density [1/km]. Still, vibration
testing protocols are also extended, e.g., “the exposure duration for common carrier/truck
is 60 minutes per 1609 kilometers (. . . ) of road travel (per axis)” [80, p.514.8C-16].

Results from Table 2.1 signified by (*) imply, that RA test did not yield test statistics
extreme enough, thus it failed to reject H0. However, CpD found several changepoints,
considered significant. The three instances marked by (*) are further discussed in the
next section.

2.4 Discussion

In principle, one could choose only the spectral centroid for changepoint detection, since
µ2 = f(µ1), µ3 = g(µ1), and µ4 = h(µ1). ). However, it is interesting that a change in
µ1 does not imply changes in other descriptors and vice versa. Albeit the necessary
number of spectral descriptors remains out of the scope, it is recommended to consider
higher-order moments simultaneously.

Slight inconsistencies between the RA test and the CpD are pointed out by (*).
Namely, changepoints have been found in series deemed stationary in the RA test.
Beck et al. [81] showed that the runs test, RA test, and modified RA test showed false
negative and false positive results.
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Table 2.1: Statistics of the spectral moments and their coefficients of variation, reverse
arrangements tests, changepoints, unique changepoints, and temporal density of change-
points of measurements A,B,C.

Results A B C

(a) µ1 ± σ(µ1) 83.06 ± 10.36 80.52 ± 12.30 105.77 ± 14.11
µ2 ± σ(µ2) 72.68 ± 4.62 72.31 ± 3.94 69.82 ± 3.77
µ3 ± σ(µ3) 0.85 ± 0.24 0.87 ± 0.28 -0.07 ± 0.34
µ4 ± σ(µ4) 2.51 ± 0.62 2.63 ± 0.62 1.79 ± 0.31

(b) cv1 12.47 15.28 13.34
cv2 6.36 5.45 5.41
cv3 28.86 32.24 -461.32
cv4 24.77 23.44 17.63

(c) z1(p) [H] (*) 0.17 (0.87) [0] 16.85 (0.00) [1] -10.67 (0.00) [1]
z2(p) [H] -11.37 (0.00) [1] 7.59 (0.00) [1] 3.75 (0.00) [1]
z3(p) [H] (*) 1.91 (0.06) [0] -17.21 (0.00) [1] 9.45 (0.00) [1]
z4(p) [H] 3.20 (0.00) [1] -15.16 (0.00) [1] (*) -1.14 (0.25) [0]

(d) γ1 38 35 49
γ2 29 35 49
γ3 35 42 51
γ4 33 41 38

(e) Γ 94 100 129
(f) Γ◦ 5.44 · 10−2 5.29 · 10−2 5.11 · 10−2

(a) mean ± standard deviation [m/s2].
(b) coefficient of variation cvi [%] = 100 · σ(µi)/µi

(c) z-value (two tails significance) [= 0 if H0; = 1 if HA] at α = 0.05.
(d) significant changepoints at α = 0.05.
(e) number of unique changepoints in {µ1, µ2, µ3, µ4}.
(f) degree of non-stationarity [1/s].
(*) Non-significant RA tests, further discussed in Fig. 2.3.
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Figure 2.2: Short-time Fourier (STFT) transform of measurements A,B,C. Below each
STFT, spectral moments µi for i = 1, 2, 3, 4 corresponding to the spectral centroid,
-spread, -skewness, and -kurtosis are plotted. The first panes also show the changepoints
by different symbols.
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Id. deduced that these tests are not always reliable for stationarity testing. The
hypothesized reason was that the above three trials had been primarily designed for
checking randomness under H0 or deciding the existence of an underlying trend under
HA. Therefore, it is also possible in the current experiment, that results marked by (*)
are false negatives since changepoints are present. Furthermore, the auto-correlation of
the corresponding spectral moments shows variation with respect to time, as presented
in Fig. 2.3.

Rouillard [82] presented his approach by using runs tests on the moving Root mean
square (RMS) series from RVV measurements, which can detect only amplitude-type
NS. However, the window width should be justified if one wishes to use moving statistics.
In contrast, the current method analyzed the time-frequency domain of measurements,
which can address amplitude- and frequency-type NS at the same time. Id. presented
his solution based on the runs test. Stationary Gaussian vibrations were also subjected
to the runs test as falsification trials, which produced true negative results in three
of four cases of different moving RMS time histories of stationary signals. However, a
similar falsification trial by Beck et al. [81] produced consecutively false positives in all
their six stationary cases.

This paragraph takes the occasion and offers future speculations on the usefulness
of segments. If every changepoint is accepted as it is, segments can be defined in
a series of µi since each (Cp) indicates a border. After that, the distribution of
spectrally homogeneous segment lengths may be studied. In parallel, each segment
can be described by an average DFT or PSD profile. Therefore, given a hypothetic
database of many segments from several journeys, the segment length distribution joint
with typical spectral shapes can lead to spectral non-stationary vibration simulations.

2.5 Conclusion

This chapter presented three experiments investigating the hypothesis of whether SNS
exists in RVV. The RA tests showed good confirmation of SNS corresponding to the
four spectral moments derived from STFT. Auto-correlation functions further discussed
the three cases of stationarity. In conjunction, CpD found significant changepoints in
the series of each investigated spectral descriptors of the measurements. Besides, an
SNS metric was proposed for RVV analysis in the long term.

It was concluded that RVV could undergo changes in STFT because changepoints are
present in the first four spectral moments. Since PSD-based vibration simulations are sta-
tionary in time- and in the frequency domain, the broad implication of current research
leads to the necessity of spectrally non-stationary simulations—whereby amplitude-type
NS has been an active field of study in PVT as of date. These findings might supply
a potential contribution to a mechanism for further non-stationary vibration simulations.
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Figure 2.3: Examples of changing Auto-correlation functions (ACF) (solid) showing
confidence intervals estimated by ± three standard deviations (dashed): Pane a) spectral
centroid of short-time Fourier transform (STFT) from measurement A; pane b) spectral
skewness of STFT from measurement A; and pane c) spectral kurtosis of STFT from
measurement C. Note, how ACF changes at different intervals.
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Thesis 1. I have presented that the shape of amplitude spectrum function is not
constant over time, due to the variation of the spectral shape manifested in the
time-frequency domain, which is due to transient events, and harmonic excitation in
accordance with the driving speed, compared to the spectral shapes of the steady-state
vibration intervals. The changes, therefore, occur locally on the time or space hori-
zon of the journeys, thus, for practical reasons it is reasonable to separate them into
homogeneous intervals. ■ Ref.: [4]



Chapter 3

Analysis of prior algorithms

Bibliographic analysis can offer an upper perspective on a discipline. In order to
understand the physical–mathematical structure behind the bibliographic landscapes,
the analytic review of proposed methodologies is inevitable. This chapter reviews in the
first place the columns of changepoint detection algorithms applied before non-stationary
simulations in PVT. Whereby possible, process flow diagrams are reproduced. The
reader can see this evolution through the collocations of time-, frequency-, and time-
frequency domain approaches; finally, the contemporary mixed methods are highlighted.
Each method is queued along: (i) introduction, (ii) discussion, and (iii) summary.

3.1 Segmentation in time domain

Let x[i] denote the i-th element of a realization of the x(t) continuous process sampled
with an equidistant sampling, ∆t, on T = N∆t period for i = 1, 2, ..., N . Segmentation
aims at finding changepoints within x[i], such that sections can be considered homoge-
neous with respect to a certain criterion in-between and different from adjacent sections.
The following methods are established on various measures of x(t) considering the time
domain characteristics.

3.1.1 Moving statistics

(i) Different moving statistics can be evaluated in windows sliding over the time
domain. Common approaches are the moving root mean square, -crest factor, and
-kurtosis [83]. If a predictor reaches a predetermined threshold, an event can be detected.

(ii) Moving statistics can be calculated in different window lengths, which might seem
an appealing solution accounting for short–long variations over time. This advantage,
however, implies a drawback when defining a justifiable window size, which is similarly
true for the threshold values. The reader is referred to [84] for the sensitivity of factors
in the presence of non-stationarities, shocks, and harmonics.

23
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Figure 3.1: Flowchart for stationary and transient identification, reproduced from [86].

(iii) The moving statistics are heuristic approaches for signal segmentation. Still, it
can assert the non-stationary nature of RVV. The simultaneous use of different window
sizes of the same statistics can be implemented, as well.

3.1.2 RMS drop-off distance

(i) Constant RMS sections and transients in the spatial acceleration domain had
been separated in [85] consisting of 415 km records, which utilize the mean square and
kurtosis. The mean square gives an unbiased estimate of the power of a signal.

(ii) Due to scanning resolution, the process arrows had been lost. Thus, a sub-
sequent article is used here to visualize the referred process diagram [86] in Fig. 3.1.
Transients are detected by “sufficiently short moving mean square drop-off distance”
and “sufficiently large spatial acceleration local crest factor.” The transient-free road
segments are classified into bins of quasi-constant RMS levels [mm/m2].

(iii) The presented method deploys arbitrary window size, bin widths, RMS levels,
and Crest factors (CF) as carefully selected parameters. The authors admit that
“different values may affect the results” but claim the remaining validity of the procedure.

3.1.3 Shock extraction method

(i) Shock extraction method is introduced in [87]. The original signal is decomposed
into a series of approximated Gaussian segments and one shock segment, based on the
Moving crest factor (MCF) and the One-tenth peak value (OTP) approaches.

(ii) The method is further studied in [88]. Albeit a “pseudo code” is provided, the
authors remain silent about the algorithm. But it is apparent that events with xκ [k]
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Figure 3.2: The decomposition workflow of Shock extraction method, S referring
to shock, G̃n denoting the n-th approximately Gaussian vibration. An individual
representation inspired by [87].

greater than a threshold are extracted. A “code” calculates the optimal threshold value,
such that κ of the remainder part is close to three. Another parameter (Hsize max. 0.5
s) is introduced to extract shocks, and ± 0.25 s around the peak location is found to
be the duration of a shock. The lower limit on the duration of segments 5 s reflects
on vibration table sensitivity. For simulation purposes, segments are simulated as
stationary Gaussian signals, concatenated to match the total simulation time. Uniquely,
segments are ordered ascending according to their RMS, and one shock segment is
appended at the end.

(iii) It is reckoned that the One-tenth peak value (OTP) is equivalent to drop-off
distance; however, a confusing definition is provided: “a horizontal line drawing from
one-tenth of the wave height intersects with the shock spectra, the time distance of those
two intersection points is deemed to be the duration, t, of that shock spectra” [87]. It is
unclear how the time domain is interpreted on a spectra; or what wave height points out
the estimation’s initial point. Wave is also under-defined: if the vibration acceleration
is meant, OTP is hard to define since shocks tend to fluctuate around an equilibrium.
Albeit Moving crest factor (MCF) is often used to index transients, it is not always
reliable and is often inappropriate for signals containing strong non-stationarities [50].
Fatigue life prediction may also be unrealistic since suffered damages may vary by
the sequence of high- and low-, or low- and high-stress fluctuations [89, p.365]. An
individual representation of the decomposition is depicted in Fig. 3.2.

3.1.4 Bayesian detector

(i) Thomas introduced a Bayesian detector to find homogeneous sections separated
by changepoints within International roughness index (IRI) and rutting measurement
series from different countries [90], according to the process visualized in Fig. 3.3. The
resulted segments of the measurement series are considered homogeneous “with respect
to a certain criterion if the associated measurement series can be described by a single
first-order auto-regressive process” (ibid.).

(ii) The Box-Cox transformation brings the series closer to the model assumption of
normal distribution. The heuristic At-most-one-change (AMOC) algorithm expresses
the probability of inserting a changepoint p(change); secondly, selecting the location
with the highest posterior support p(location|change) . Heuristics are motivated by
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Figure 3.3: Steps in the execution of the algorithm, reproduced from [90].

placing changepoints sequentially instead of simultaneously to avoid a numerical burden
by the binomial coefficient. The first run scans the series block-wise, obtaining the
probability of the overall existence of a change somewhere. Given a changepoint, the
block steps further; otherwise, the block slides to the right with an overlap. Blocks
containing one changepoint are further analyzed in subsequent runs. The first part
seeks for additional changepoints between preliminary borders. The second part checks
the changepoint’s actual necessity given the neighboring ones and its correct position.
If neither the number nor the location of the changepoints is altered, the algorithm is
terminated.

(iii) The method is a fast iterative algorithm that needs to undergo further ex-
perimentation [38]. Sometimes the method can get into an endless cycle of recurrent
partitions. The approach objectively allows probability-based decision-making, even
though various coefficients need to be determined.

3.1.5 Random Gaussian sequence decomposition

Charles formulates the idea of Random Gaussian Sequence Decomposition (RGSD), as
non-Gaussian RVV can be decomposed into random Gaussian distributions [91]—Lepine
reports in [38]. The idea is worked out later by Rouillard [92]. Sek in [93] summarizes
other procedures of environment descriptions recommended by Charles. Rouillard uses
Hilbert transform to obtain the magnitude of a vibration signal [94]. The reduced
form of the magnitude is called vibration intensity, which can describe the statistical
characteristics of an RVV. Id. introduces a different form of data reduction technique in
[95] by a so-called dynamic bin width. Following, id. works out the RGSD [92] and later
presents a cumulative-sum/bootstrap algorithm to find stationary segments in an RVV
[96]. The synthesis of non-Gaussian RVVs is presented by id. in his thesis [97], which is
currently under permanent embargo; still, the research [98] is published in the same
year, presenting RGSD with the changepoint detecting algorithm and introduces the
concept of modulation function. Id. introduces different distributions to characterize
the non-stationary nature of RVV in [99].
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Reduction of the analytic signal

(i) Rouillard and Sek hypothesize that a non-stationary random vibration signal
can be modeled as the amplitude-modulated version of a steady-state random signal
[94]. Given a time-series a, the analytic signal ã is obtained by Hilbert-transform. The
magnitude M of ã is reduced and named vibration intensity, VI, which can be later
used for amplitude modulation of a stationary Gaussian series.

(ii) Two methods are given for data reduction: a) Mi+1 is eliminated, if |Mi−Mi+k| <

∆M , where the selected magnitude bin is denoted by ∆M . Thus, consecutive Mi can be
thought redundant, where those are between a tolerance limit; b) the VI can be further
compressed according to the Probability density function PDF of VI, thus PDFVI.

(iii) Ibid. is concerned in first place with reduction of M ; however, a–b) are also
reprehensible as segmentation methods, albeit ∆M and PDFVI bin width are subjective
parameters.

Dynamic reduction of the analytic signal

(i) Segmentation with peak-valley considerations is presented in [95] to characterize
the non-stationarity of RVV. Given a signal and its Hilbert-transform, the magnitude of
the analytic signal is obtained. The magnitude is smoothed and fed to an algorithm to
detect quasi-stationary sections. The algorithm reduces the number of points in M but
utilizes a dynamic segmentation bin width and considers the peaks and valleys, Mpv .

(ii) The absolute difference |dM| between current VIn and the subsequent i + 1-th
magnitude peak/valley Mpvi+1 is computed. The “dynamic segmentation bin width”,
VIb is, simply put, a bin size to differentiate regions on the magnitude axis. If |dM | is
greater than the actual bin size corresponding to VIn, a new segment is initiated at the
investigated Mpvi+1 being the new initiative VI. If the difference is smaller than the
actual threshold, the Mpvi+1 is included in the VI average and Mpvi+1 is discarded. An
operation “∗I” is not discussed.

(iii) The smoothing algorithm needs a window width, but the parameter is not
introduced. Neither the identification of Mpvi+1 is discussed, nor the derivation of VIb

is available, whereas b = 0.5 exponent is found to “produce very satisfactory results”.

Random Gaussian sequence decomposition

RGSD is a theoretical framework proposed by Charles and implemented by Rouillard
[92]. The fundamental hypothesis covers that RVV is composed of zero-mean Gaussian
processes with varying standard deviation. It is tested by comparing the sum of
Gaussian estimates against the PDF of the original RVV. The algorithm does not
provide changepoints within a measurement series; thus, it cannot indicate stationary
segments’ place and duration.



28 CHAPTER 3. ANALYSIS OF PRIOR ALGORITHMS

CUSUM–Bootstrap algorithm

(i) Rouillard presents a changepoint detection algorithm to find the length of
stationary segments in RVV [96]. Instantaneous magnitude computed by Hilbert
transform is subjected to a cumulative sum-bootstrapping method. The algorithm
assesses the probability of a changepoint being present, thus deals with amplitude-type
non-stationarities. A variety of RVV measurements and simulated time domain signals
were used to derive a distribution of segment lengths.

(ii) In lack of a process diagram, the script is quoted here in the next six points
(ibid.):

1. “The instantaneous magnitude of vibration is computed using the Hilbert Trans-
form.

2. Compute the cumulative sum of the instantaneous magnitude vector normalized
with respect to the mean magnitude.

3. Apply the bootstrap algorithm sequence whereby the entire instantaneous vibration
vector is randomly re-samples a number of times and the cum-sum re-computed
for each re-sampled vector.

4. The maximum and minimum envelopes from the bootstrap samples are computed.

5. The largest extremum of the original record is detected and identified as a change-
point. Its value is compared with that of the bootstrap sample (. . . ).

6. The change point is identified as significant or valid if the ratio of the largest
extremum to the bootstrap extremum exceeds a predetermined value. In all cases
studied, the ratio threshold of 5.5 was identified as adequate (. . . ).”

The record is bisected at a valid changepoint, and resulting segments are subjected to
the same CUSUM-bootstrap procedure until no more changepoints are identified, or a
minimum segment length is reached. It is worth noting that CUSUM here refers to the
cumulative sum of differences between each value and the total mean of the series1

ck =
k∑

i=1
(xi − x̄i) (3.1)

for i = 1, ..., k. The validity of candidate changepoints must be quantified, for which
bootstrapping is applied. Certain factors are unknown, such as the number of repli-
cations for the reference set or whether a resampling2 with- or without replacement

1An upward- or downward trend in ck indicates values tending above or below the overall average.
2Bootstrapping and permutation are resampling with- and without replacement, respectively [79].
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Figure 3.4: Wavelet decomposition. An individual representation inspired by [100].

is implemented. Usually, resampling is applied to derive the significance level of a
changepoint being present in x, such as

p̃ = 1
R

# {ĉK < ĉr} (3.2)

where p̃ is the estimated p-value, R is the number replications, # [·] denotes number of
elements, such that ĉK extremum is greater than the extrema from ĉr in replications
r = 1, ..., R. Id. uses a different approach:

ĉK > 5.5 · ĉr, (3.3)

seemingly heuristically, since the 5.5 multiplier is found “adequate”. Against too many
changepoints, individual thresholding was necessary instead of significance levels.

(iii) Albeit the algorithm skips the possibility of significance levels, and some
factors are hidden, several RVV signals subjected to this algorithm had produced
consistent estimates on the probability density function of segment lengths by considering
amplitude-type non-stationarities.

3.2 Segmentation in frequency domain

Following methods consider spectral characteristics, for which Fourier-, wavelet-, and
Hilbert-Huang transform is often favored. Their introduction is set aside here, whereby
the reader is referred to consult the actual references.

3.2.1 Wavelet decomposition

(i) Wei et al. introduce a wavelet decomposition procedure, supplying supplementary
information to pavement roughness indices [100]. Id. investigates the capability
of wavelets in the detection of local pavement distresses and provides the following
algorithm.

(ii) International roughness index (IRI) signal given in the distance domain is
decomposed by DWT into frequency sub-bands di. A supra-threshold amplitude in
the sub-band d5 indicates possible surface distresses for field inspection. An individual
representation can be found in Fig. 3.4.

(iii) The decomposition given Daubechies wavelet (DB3) is found proper until the
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fifth sub-band. The specific number of sub-bands shows that the necessary number
of decomposition levels must be investigated per application, just like the threshold’s
justification. Unfortunately, the detection capability has been presented only on
International roughness index (IRI) series having artificial distresses. Despite the
manual transients in the signals, the article served as initial points in later research
to investigate the wavelets in high-sampled time-series, such as vertical acceleration
vibrations.

3.2.2 Separation by filtering

(i) Rouillard et al. present separation by filtering in [101] for rail car vibration
environment. Shocks are removed in frames from the time domain signal via thresh-
olding. Filtering in the frequency domain is introduced as an alternative approach,
for which different assumptions are necessary. The simulation superimposes intermit-
tently occurring structural vibrations (transients or shocks) onto the rigid-body random
vibrations.

(ii) A numerical low-pass filter separates the rigid-body- and structural vibrations
at the cut frequency. Id. believes that impulsive vibrations can be described by their
“amplitude and their statistical likelihood of occurrence” given their similar characteristic.
It is assumed that a) rigid-body motions are band-limited up to a cut-off frequency and
intermittent vibrations lie within a different frequency band; b) rigid-body motions have
the same frequency characteristics, i.e., quasi-stationarity throughout the record. Finally,
the similar characteristics of impulsive vibrations must be investigated—unfortunately,
no guidance is provided.

(iii) From a simulation perspective, this is the Shock-on-random method. Shocks are
simulated according to their amplitude PDF and triggered by a random clock. Random
vibration is modeled as a steady-state Gaussian signal from the average rigid-body PSD.
Here, I presume that assumptions a-b) are closely related to the investigated scenario
of rail-car vibrations, whereby those cannot be guaranteed in RVV.

3.2.3 Intrinsic mode functions

(i) Rouillard introduces the Hilbert-Huang transform (HHT) for the analysis of
rail-car vibrations aimed to describe prevalent frequency-type non-stationarities [102].

(ii) By HHT, the random signal is sifted into intrinsic mode functions (IMF), and
the analytic signal from each IMF is computed. The absolute value of the analytic
signal corresponds to instantaneous magnitude. Id. assumes that modes 1–4 represent
higher, modes 5–7 represent lower frequency components, and modes 8–12 are ignored,
describing very low frequencies. It is concluded that the method has a special significance
in the simulation of rail-car vibrations since it may be well advantageous to simulate
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these two processes separately. The superior resolution of IMF is highlighted, and a
spectrogram is presented, but methods for changepoint detection are not offered.

(iii) The paper successfully corresponds to the introduction of HHT in PVT; however,
no process is offered to identify changes in the spectrogram.

3.3 Segmentation in time-frequency domain

Following methods operate in the time-frequency domain. Typical choices are continuous
wavelet- and Hilbert–Huang transform, whereby short-time Fourier transform is rarely
used in the presented methods.

3.3.1 Wavelet-based Gaussian decomposition

(i) Griffiths et al. developed the Wavelet-based Gaussian decomposition (WBGD) to
decompose RVV into series of segments with different kurtosis, which can be separately
simulated and concatenated to obtain a non-stationary random vibration in total [103,
104]. The approach uses the continuous wavelet transform (CWT), evaluating the
frequency spectra’ variation through time.

(ii) The process can be articulated along the following ideas in Fig. 3.5. Slightly
different notations are used here to help the understanding. Given a vibration signal ym

and its power spectral density Sy,m , an equivalent stationary Gaussian vibration xm

can be derived. The CWT of each signal is obtained by a complex wavelet, resulting in
positive and negative absolute coefficients Cy,m(a, b) and Cx,m(a, b). A decomposition
envelope DE is derived from the extrema through the translation b of Cx,m(a, b). Regions
of Cy,m(a, b) outside DE are candidates of non-Gaussian regions; in turn, in-lying regions
are considered Gaussian parts. “The data windows surrounding locations that exceed
the envelope are extracted from the vibration signal,” here at shortest 1 s. Out- and
in-lier regions CO

y,m(a, b) and CI
y,m(a, b) are concatenated, forming two signals, and

their wavelet coefficients are inversely transformed, yielding yO
m, and yI

m, respectively.
If the kurtosis β2(yO

m) is smaller than a threshold β2T , the vibration signal ym=1 is
replaced by the outlier yO

m, and the decomposition is repeated from 1–7), yielding
y = yI

1||...||yI
M ||yO

M . The iteration continues until the iteration limiting number M is
reached or β2(yI

m) < β2T . The second stage of iteration might begin to form

yI
i1(t) =

S∑
i2=1

yI,I
i1,i2(t) + yI,O

i1,S(t), for i1 = 1, ..., M (3.4)

yO
M(t) =

S∑
i2=1

yO,I
M1,i2(t) + yO,O

M,S(t) (3.5)

Steps 1–8) are repeated given a supra-threshold kurtosis or until the iteration limiting
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number S per component i1. Through simulation, final components can be simulated by
individual Sm,s corresponding to the duration Tm,s ordered in a desired sequence. yO

M is
likely to contain most of the high-level shock events, which can be further decomposed
in the second stage arriving at yO,O

M,S, which still encompass most of the non-Gaussian
characteristics, constituted by mainly the high-amplitude events. “These segments will
have highly non-Gaussian distributions, thereby strengthening the limitation that the
wavelet decomposition method will always produce one Gaussian approximation that is
highly non-Gaussian” [103, p.190].

(iii) WBGD operates in the scale-translation domain, and in an iterative manner,
partitions the CWT of an RVV into quasi-Gaussian- and remaining parts concerning the
kurtosis. The main idea to highlight here is that a section is labeled as Gaussian if its
CWT fits within the CWT extrema of a Gaussian equivalent at any iteration stage. The
simulated signal has a good match in PSD and kurtosis to the measured RVV, albeit
the RMS distributions of the original and simulated signals are significantly different,
although it is expected by id. [104, pp.788–789]; however, it remains inconsistent with
other empirical studies concerned with the RMS distribution of Gaussian segments.

3.3.2 Hilbert amplitude spectrum

(i) Mao et al. presented their method based on the Hilbert amplitude spectrum to
characterize and simulate non-stationary random vibrations [105], as in Fig. 3.6. Note
that the current section chooses slightly different notations for readability.

(ii) Given an s(t) sample, the Hilbert-Huang transform yields the HS(ω, t) time-
frequency domain. The CUSUM approach is responsible for changepoint detection per
each frequency bin over time. The instantaneous magnitudes between changepoints are
fitted by five different distributions PΘ as gamma, exponential, Rayleigh, log-normal,
and Weibull distributions for Θ : G, E, R, Ln, W . The Kullback–Leibler divergences for
PΘ of instantaneous magnitude within segments h(ωi, t) are calculated:

δKLΘ(PΘ||h(ωi, t)) =
∫

PΘ log10
PΘ

h(ωi, t)dt ≥ 0, (3.6)

and averaged through segments of each frequency yielding δKLΘ(ωi). The idea to
highlight here is that each frequency section is characterized by one family of fits having
the lowest δKLΘ(ωi). By simulation, random variables are generated according to PΘ,
and in conjunction with a phase function Ψ(t), finally x(t) can be simulated.

(iii) Further improvements might be obtained by choosing the best-from-the-five fits
directly in each segment. This can be justifiable if δKLΘ(ωi) are biased by the outlier
δKLΘ. Besides, the method is capable of segmentation in the time-frequency domain,
however, as the virtue of the fitted distributions, it can also be considered a random
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Figure 3.5: Wavelet-based Gaussian decomposition, reproduced from [104].
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Figure 3.6: Flow diagram of simulation method, reproduced from [105].

simulative approach.

3.4 Mixed methods

Here an algorithm is referred to as a mixed-method if it can consider time- and frequency
domain characteristics simultaneously.

(i) Lepine presented a continuous contribution to PVT by studying Machine learning
classifiers (MLC) to detect shocks in RVV. The foundation of MLC is presented in the
thesis [84]. The support vector machine (SVM) had been compared to the moving crest
factor via receiver operating characteristics (ROC) in [50]. Four different MLC (decision
tree, k-nearest neighbors, bagged ensemble, SVM) are investigated by synthetic RVV
in [106], as in Fig. 3.7. Ibid. is constituted by a detection enhancement algorithm in
Fig. 3.8. The above MLC are further analyzed, and validation by real RVV is proposed
in [49].

(ii) RVV measurements with registered shocks are mostly unpractical. Thus artificial
RVV might be generated [106]. The synthesis mimics natural RVV as far as the
dynamic model is accurate. Different predictors are used, such as xrms, xcf , xκ, DWT,
instantaneous amplitudes, and frequencies of the IMF from HHT. The validation and
calibration of MLC hold several possibilities, such as ROC curves, the distribution
of absolute peak acceleration of shocks can be compared among the validation signal
and detections, the purpose-developed Pseudo energy ratio–fall-out (PERFO) curves.
Optimal operating point (OOP) definition has various possibilities; however, OOP by
synthetic calibration is inadequate for real RVV applications in [49]. In consequence,
a synthetically setup MLC may not be directly suitable for real-world applications.
Definition of shock also has special considerations as of application, e.g., “sudden and
severe accelerations of a finite and measurable duration” [50]; or “a sequence of data
points instead of individual data points” together with the “detection has to overlap
at least 75% of the shock duration to be considered true” in the validation [49]. The
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Figure 3.7: The workflow of the classification algorithm, reproduced from [106].

Figure 3.8: Detection enhancement algorithm, individual representation from [106].

enhancement algorithm covers a window size in [106]. All data in the window is classified
as a shock if it contains “at least 10% of data points”.

(iii) A “considerably more accurate and reliable” detection performance of the MLC
is claimed against the conventional moving crest factor (64 s), producing 13% better area
under the ROC curve (AUC index) [50]—but one should consider the numerical expenses
of this improvement. Development of performance assessment methods is presented, such
as ROC- and PERFO curves, distribution of absolute maximum accelerations of shocks.
Furthermore, the definition of shock might be necessary to adjust. Since inconsistencies
are shown for synthetically setup MLC in real-world applications, validation on real-
world RVV was proposed [49]. Consequently, the on-site measurements with a precise
indication of shock-inducing instances are hardly avoidable. Additional validation of
the MLC must be undertaken for the general implementation of MLC to specific RVV
(ibid.).

3.5 Discussion

A concise appraisal platform is provided in Table 3.1, discussing various aspects of
the dilemma of adaptability. Each method is investigated by a) reproducibility, b)
heuristics, c) subjective thresholds and d) accompanying simulations, discussed in
the followings. A method is considered reproducible a) if it can be translated into
programming languages solely on the published information, given the same dataset is
on-hand. For instance, a method being silent about sub-steps in the reference cannot
be considered reproducible in the author’s eyes. Point b) corresponds to the need for
manual parameters and settings in the approach. While some algorithms are designed for
heuristic solutions (e.g., to avoid computational overflow) and others had to experiment
with the method itself anno, one can have preferences now toward data-driven solutions,
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as well. However, the new adoption of such techniques and some form of heuristics does
not mean obsoleteness. Question c) investigates unexplained threshold values, while a
few of them have traditional uses noted in the table notes. Finally, question d) reflects
mainly on the early adoption of the segmentation methods in the simulations. Papers
devoted only to detection still possess an important place in the history of technology.
In conclusion of the appraisal platform, it is advised to perceive the legend entries
of Table 3.1 as state-switches or toggles instead of scores. The following paragraphs
discuss and summarize the above methods.

Moving statistics have the longest history because of simple implementation, thus,
an early introduction to the discipline, as well. The window size and the threshold value
often need heuristics to arrive at a sufficient solution. RMS drop-off distance partially
uses such techniques thoroughly investigated in the thesis. Shock extraction method is
a young algorithm, mostly relying on older approaches. It is not easily implementable,
until new insights in the algorithm are provided. Bayesian approaches represent a
traceable procedure with transparent insight into decisions. Its performance must be
presented on high-sampled datasets, as well. The Section 3.1.5, including subordinate
methods have the strongest establishment in PVT. However, a few details are only
provided on a seemingly investigatory basis.

Frequency characteristics are often in the interest, relying on Fourier-, wavelet- and
Hilbert- transforms. Apart from theories applied to arrive in this domain, distinctive
approaches can be mentioned here. The Wavelet decomposition [100] uses thresholds to
find transients. Separation by filtering is a well-established method, leaving the cut-
frequency the only investigatory parameter beside general necessities (e.g., windowing)
in discrete Fourier transform. Albeit no changepoint detection had been presented
above in regard to Intrinsic mode functions, it is still regularly used nowadays because of
its superior resolution. Wavelet-based Gaussian decomposition [103] presents a unique
approach, utilizing CWT. The concerns addressed in terms of simulated signals must be
investigated on an individual basis before implementation. Hilbert amplitude spectrum
by [105] is successful both in segmentation and simulation.

MLC applications show promising results but only in a costly manner. The presented
PVT applications show good accuracy on shock detection; presumably, further develop-
ments are ahead. In summary, moving statistics are recommended only in an explanatory
phase of the analysis. For detection in time domain, the CUSUM–Bootstrap- along with
the Bayesian approaches are favorable. The sample of frequency domain approaches is
smaller; thus, a try can be given for any of the three procedures. Both time-frequency
domain methods produce transparent results, therefore those encompass preferably
successful implementations. Hence, a favorable algorithm is numerically parsimonious,
utilizes as few heuristics and subjective thresholds as possible, and prefers data-driven
solutions. It provides a transparent decision-making and remains reproducible.
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Table 3.1: Appraisal matrix of previous segmentation methods proposed before non-
stationary simulations or introduced as standalone methods, investigated by a) Repro-
ducible? b) Avoid of heuristics? c) Avoid of subjective thresholds? d) Accompanied by
simulation?

Domain Segmentation method R. a) b) c) d)

Time

Moving statistics1 [83] • ◦ ◦ ◦
RMS drop-off distance [85] • ∗2 • •
Shock extraction method [87] ◦3 ∗4 ◦ •
Bayesian detector [90] • ◦ • ◦
Reduction of analytic signal [94] • ∗5 • •
Dynamic reduction of analytic signal [95] • • ∗6 •
CUSUM-Bootstrap algorithm [96] • ∗7 ∗8 •

Frequency
Wavelet decomposition [100] • ∗9 ◦ ◦
Separation by filtering [101] • • ◦ •
Intrinsic mode functions [102] • ∗10 ∗11 ◦

Time-Frequency Wavelet-based Gaussian Decomposition [103] • ∗12 • •
Hilbert amplitude spectrum [105] • • ∗13 •

Mixed Machine learning classifiers [84] ∗14 • ∗15 •
Legend: R. - first reference; • - yes; ∗ - conditionally yes; ◦ - no
1 Noting, that it is a cross-disciplinary technique.
2 Apart from the moving window size.
3 Since “pseudo code flow” remains unexplained, e.g., Hsize.
4 Apart from unexplained steps, the algorithm seems to work autonomously.
5 Accepting the selected magnitude bin ∆M , as a data driven solution.
6 The threshold value is derived from a subjective parameter, V Ib

7 Apart from Eq. 3.3 above.
8 Apart from Eq. 3.3 above.
9 Accepting, that type of wavelets and the level of decomposition are inherent to DWT.
10 Since the number of IMFs separating low- and high frequencies are only “assumed”.
11 If the “assumed” number of IMFs—separating low- and high frequencies—are accepted.
12 Accepting, that type of wavelets and the level of decomposition are inherent to CWT.
13 Accepting, that significance limits in hypothesis testing have traditional uses.
14 Accepting, that the “skills” of machine learning classifiers depend on the training.
15 Since some predictors are moving statistics.
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3.6 Conclusion

It is agreed that packaging systems set up a safety factor in the assurance of the
transported goods’ quality. However, different costs can be associated to over- and
under-insurance of the shipment. Therefore, the academic community developed various
vibration simulation methods beneath standardized procedures, each containing unique
signal segmentation practices.

Standardized methods in PVT remain in position for the expected conformity
toward standards. Concurrent new methods emerge to account for the deficiencies of
PSD-based methods, viz., the produced random vibrations are stationary and Gaussian.
No universally accepted method for RVV simulations exist as pointed out by [38], who
also addressed some segmentation techniques. In line with this, the applied changepoint
detection algorithms present a wide toolbar. Harmonic excitation in RVV is still hardly
discussed; the above approaches can partially address the phenomena. Thus, the
discussed methods mainly apply to transient event- and non-stationary segment border
detection. Unfortunately, some algorithms are hardly reproducible, which does not
facilitate the acceptability of proposed methods and delays improvements in standards.

The amplitude- and frequency-type non-stationarities in RVV can be simultaneously
approached from the time-frequency domain. Frequency modulation detection is less
discussed than amplitude disturbances, as apparent from the number of methods. Nu-
merically parsimonious methods are mostly heuristics, based on window statistics and
thresholds, which may produce satisfactory results, given the corresponding parameters
are justifiable. Sophisticated signal processing methods still often encounter some form
of subjective thresholds. Therefore, data driven approaches are favorable.

Thesis 2. I have observed that previous segmentation algorithms have been uncalibrated
and designed along heuristic considerations in several cases. Calibration of detection
algorithms is essential when investigating road-induced vibrations. For verification
purposes, the segment length distribution should be investigated on a test sample, as a
necessary complementary investigation beneath the receiver operating characteristic. ■

Ref.: [5]



Chapter 4

Development of segmentations

This chapter introduces three different segmentation methods. First, the short-time
Fourier transform plane is segmented by paired t-tests in Section 4.1 as of [7]. A subse-
quent variant investigates the two-sample t-test in the multiple comparison procedure in
Section 4.2 according to [6]. Finally, the spectral moment segmentation, foreshadowed
in Chapter 2, is discussed in more details by Section 4.3 [4, 10].

4.1 Multiple hypothesis testing by paired samples

Segmentation of road vehicle vibration (RVV) signals can occur by the need to analyze
or synthesize vibrations obtained in passenger cars or on the stowage of vans, trucks. A
general and widely used measure to quantify RVV signals is its description via power
spectral density (PSD). From a given PSD a Gaussian signal can be generated in a
shaker testing laboratory. However, actual RVVs tend to have a non-Gaussian and
non-stationary nature, which can be modeled as a composition of different segments,
each with a different length and RMS content. For simulation purposes of non-stationary
vibration signals, various approaches had been introduced yet each with its unique
signal segmentation. Here, a signal segmentation method is proposed working in the
time-frequency domain for finding segments within an RVV signal, where each segment
has similarity in-between and are dissimilar to neighboring segments according to the
paired t-test [107, p.1560]. For this purpose, multiple hypothesis tests (MHT) had been
utilized between the Short-time Fourier transforms (STFT) applied on given fractions of
an RVV. Different countermeasures had been applied against the Type I. error inflation
[107, p.1574].1

1Further details on erroneous statistical decisions can be found in Table 4.1 and 4.2, the interested
reader also finds valuable summaries in [107, pp.1574–1581].

39
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4.1.1 Introduction

A hypothesis testing-based RVV segmentation method is introduced in the followings, in
order to systematically assess the information contained in the time-frequency domain
of a given measurement series. The current procedure consists of the interpretation
of paired sample t-test [107, p.1560] and the Wilcoxon signed rank test [108, p.25-17]
in order to find spectrally similar segments within the waterfall plot of the Discrete
Fourier transforms (DFT) calculated per 2 s of an RVV. After the multiple hypothesis
procedures, two different methods will be introduced against Type I. error inflation,
which is accountable in multiple hypothesis testing. Different agglomerate diagnostics
of the yielded segments will be briefly compared with an emphasis on the post hoc tests
[109].

4.1.2 Methods

The independence of samples must be ensured before evaluating hypothesis tests in
the current method. Therefore, the auto-correlation function of the acceleration signal
had been examined first in Fig. 4.1. The acceleration signal is strongly auto-correlated
within 2 s, which has the practical consequence that the smallest time resolution of the
current segmentation algorithm is limited to 2 s, and shorter segments within STFT
cannot be detected. Smaller fluctuations of the ACF exceeding the confidence interval
are also noticeable in higher lags, which are assumed here non-significant, as if the
signal was not auto-correlated above lags corresponding to 2 s.

The given signal in Fig. 4.2 represents the waterfall plot of the DFTs of an RVV
signal measured on a passenger car’s cockpit sampled with 1 kHz during a 600 s long
journey in the study of [110]. A window frame equal to 2000 samples used for the
calculation of DFTs yielded 300 timeframes.

The time-frequency domain is interpreted on an equidistant grid per axis with 0.5 Hz
and 2 s resolution. The following calculations are limited to the [0,100] Hz bandwidth.
The DFT vectors have the same resolution over time; thus, it can be interpreted as the
paired observations of the same frequency bins over time.

The paired sample t-test and its non-parametric variant, the Wilcoxon signed rank
test are utilized here to find the dissimilarities between consecutive DFT distributions.
Two vectors of the spectrum lines will be compared on the α0 = 0.10 preliminary
significance level. Afterwards, the resulted series of p-values are compared to differently
adjusted significance levels.

Paired sample t-test

Using a one-sample t-test, statistical inference can be made about the null hypothesis
that the data comes from a population with a mean equal to µ. The alternative
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Figure 4.1: Auto-correlation function of the acceleration signal (black), with 95%
confidence interval (grey), where dashed vertical at lag 1999 denotes the subjective
border, above which ACF is considered minor.

Figure 4.2: Waterfall plot of the discrete Fourier transforms per 2 s, where the resolution
is 0.5 Hz in the frequency domain and 2 s in the time domain.
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hypothesis can be formulated as that the population distribution does not have a
mean equal to µ. The one-sample t-test is a parametric test of the location parameter
when the population standard deviation is unknown. Under the null hypothesis, the
test statistic has a Student’s t-distribution with n − 1 degrees of freedom [111]. The
corresponding hypothesis pair for a two-sided test is, as follows

H0 : data has a mean equal to µ,

HA : data does not have a mean equal to µ.
(4.1)

The observations in each group are paired with another observation from the other
group. The distribution of differences did not follow a normal distribution from the total
299 sets based on Anderson–Darling tests on 0.10 significance level. The assumption
of normality of the differences is harmed in every case. However, paired t-test are
robust to the assumption of normality [108]. The chapter proceeds with the paired
t-test despite the possible effects of the outliers, since the reason for outliers being
present remains unknown; on the other hand, changes in spectral peaks (on the reason
of either frequency- or amplitude modulation) are in the major interest of the current
examination. Alongside the non-parametric Wilcoxon signed rank test [112] is also
implemented in another MHT, which are more suitable to the testing of non-normal
data. The differences between each of the paired observations serve as the input to
conduct a one-sample t-test, and the non-parametric Wilcoxon signed rank test. The
paired sample t-test assess the null hypothesis, that the data in d = x − y, comes from
a normal distribution with mean equal to 0. The paired sample t-test is practically a
one-sample t-test of the mean of differences between the paired observations, to test
the null hypothesis that the pairwise differences d between data vectors x and y has a
mean equal to 0, such asH0 : data in d = x − y has a mean equal to µ,

HA : data in d = x − y does not have a mean equal to µ.
(4.2)

The p-value is the probability of the test statistic being at least as extreme as the one
observed, given that the null hypothesis is true. The choice of α is somewhat arbitrary,
although in practice values of 0.10, 0.05, 0.01 are commonly used. The significance level
will not be considered here as a part of either the acceptance or the rejection areas. It
is also examined that no p-value falls on the significance limits in Fig. 4.9.

After completing STFT with 2 s window lengths resulted in Fig. 4.2, the current
design can be considered as the paired observations of DFT values ai in the 2i-th
seconds, in-between 0.5 Hz resolution. Let j denote the j-th difference vector and the
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j-th hypothesis pair takes the formH
(j)
0 : dj = ai − ai+1 has a mean equal to 0,

H
(j)
A : dj = ai − ai+1 does not have a mean equal to 0.

(4.3)

When we fail to reject the H
(j)
0 , that would indicate that two consecutive DFT vectors

have the same mean, which could indicate that these vectors are associated through
their mean statistics, and those will be grouped in the same segment. In case of a
significant finding, namely we reject an H

(j)
0 in favor of H

(j)
A would indicate that the two

consecutive DFT vectors do not have the same mean, which could indicate dissimilarity
among the mean statistics of the vectors, hence they are not associated in this sense,
and the initial point of a new segment can be defined.

Wilcoxon signed rank test

The non-parametric Wilcoxon signed rank test is utilized here for two populations being
paired. The test statistic, W is the sum of the ranks of positive differences between the
observations in the two samples, dj. The returned p

(j)
W -value corresponds to a paired,

two-sided test for the null hypothesis that dj comes from a distribution with a median
equal 0. In case the sample size is large, or the method is approximate, the test function
calculates the p-value using the z-statistic [111].

α adjustment

The preliminary significance limit is set to α = 0.10 in current example. Even though a
high number of tests found significant a priori, not all of them may be considered truly
significant due to α inflation. This section introduces the Type I. error inflation and
the following two sections deal with two different post hoc procedures to control the
Family-wise error rate (FWER).

The Type I. error rate or significance level is the probability of rejecting the null
hypothesis, given that it is true [107]. If the null hypothesis is false, then it is impossible
to make a Type I. error [113]. The incorrect rejection of the null hypothesis is referred
to as a false positive. The probability of correctly accepting a true null hypothesis
equals S = 1 − α and is called specificity.

The incorrect acceptance of the null hypothesis is called Type II. error [107], which
can only occur if the null hypothesis is false, and the probability of committing this error
is called β. This second type of error is often called a false negative. The probability of
correctly rejecting a false null hypothesis is P = 1 − β and is called power. Type of the
possible statistical inferences are given in Table 4.1.

In the simultaneous multiple comparisons of more than two groups, e.g., e,B,C the
following j = 1, . . . m hypotheses can be formulated, and the set of comparisons is
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Table 4.1: Types of conclusions in a statistical hypothesis test.

Statistical inference
H0 true∗ H0 false

Actual fact H0 true Correct decision,
S = 1 − α

Type. I error,
α

H0 false Type II. error
β

Correct Decision,
P = 1 − β

* Precisely, fails to reject H0
Specificity, S; power or sensitivity, P .

Table 4.2: Framework of multiple hypothesis tests.

Statistical inference
H0 true H0 False

Total,
m

Not rejectd,
m − R

Rejected,
R

Actual fact
H0 true

m0

Correct decision,
m0 − U

Type. I error,
U

H0 false
m − m0

Type II. error
m − R − (m0 − U)

Correct Decision,
R − U

* Precisely, fails to reject H0.
m, m0, R, U, . . . denote the number of hypotheses in the cell.

referred to as a family of test. In the current case, m = 299 comparisons per MHT had
been made. Table 4.2 introduces the framework for simultaneous hypotheses testing
[114], given at least two hypotheses to be tested.

When more than one hypothesis has simultaneously tested the probability of com-
mitting false statistical inferences increases considerably. Utilizing the same Type I.
error rate in an increasing number of comparisons will result in an ascending family-wise
error rate2 FWER = P (U > 0), i.e., it will increase the probability of at least one Type
I. error during the MHT. The Bonferroni inequality can be expressed for a set of tests,
as αf ≤ m · αp. The overall error level for the family of tests αf differs from the αp error
level for one comparison. If the same αp error level is adopted for each comparison in
m multiple hypothesis, the overall α error level for the family of tests αf is calculated
as the following procedure in Eq. 4.4–4.5 [109]: The probability of no α error per one
comparison is Spc = 1 − αp, and the probability of no α error for the overall family of
m tests is

Sf = (1 − αp) · . . . · (1 − αp) = (1 − αp)m (4.4)

2Other measures for accounting Type I. errors [114], like the per-comparison error rate, such
as PCER = E(U)/m, where E(·) denotes the expected value; or the false discovery rate, such as
FDR = {E(U/R), if R > 0; otherwise FDR = 0,if R = 0} are not discussed here.
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Figure 4.3: Alpha inflation. Probability of at least one Type I. error as a function of the
number of comparisons for cases of applying the same 0.10, 0.05 and 0.01 significance
levels per comparison.

for comparisons independent of each other. The family-wise Type I. error rate is

αf = 1 − (1 − αp)m (4.5)

The Eq. 4.5 is also known, as α inflation and is visualized in Fig. 4.3 for three different
preliminary chosen typical α0 = αp levels.

Different α adjustment techniques can be introduced as countermeasures to overcome
the issue of the inflating likelihood of a Type I. error. The following subsections discuss
two of the possible processes, namely the most straightforward—sometimes referred
to as over-conservative—Bonferroni adjustment and its less conservative variant the
Holm–Bonferroni adjustment.

Here shall be noted that for the goal of current signal segmentation method, the
MHT is not utilized in the same manner as some of the typical post hoc tests following
an ANOVA design, where the tests are interested in all pairwise comparison (e.g. A–B,
A–C, B–C). The number of hypotheses to be tested is relatively high; on the other hand,
the design of the current experiment is only interested in the comparison of neighboring
vectors (e.g. A–B, B–C). Therefore, a consecutive setup conforms best the approach of
this method.

Bonferroni adjustment

The Bonferroni method [115] is a simple technique that makes it possible to make
several comparison statements while ensuring that an overall confidence coefficient is
preserved. The significance level is divided by the number of hypotheses tests, and each
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p-value is compared to the new significance level

αB = α0

m
(4.6)

The more hypotheses to be tested, the criterion gets more stringent and lowers the
Type I. error per comparison, but also lowers the test’s power.

Holm–Bonferroni adjustment

Holm adjustment [116] was subsequently proposed with less conservative character [117]
and more power [109]. The method computes the significance levels αHB depending on
the rank of p-value. A step-down procedure is performed according to the ascending
ordered p(s) value compared to successively increasing significance limits. The procedure
similarly to [114] is as follows. The adjusted significance limit for the s-th hypothesis is

αHB = α0

m − s + 1 (4.7)

and H(1), . . . , H(m) are tested from the smallest to the largest p-values. The comparison
stops at the first p(s∗) ≥ α

(s)
HB and p(s∗) with subsequent hypotheses are directly declared

non-significant, viz. let s∗ be the minimal index, such that

p(s∗) ≥ α0

m − s∗ + 1 (4.8)

all the hypotheses H(1), . . . , H(s∗−1) are declared significant.

4.1.3 Results

Multiple paired t-test and Wilcoxon signed rank test of consecutive DFT vectors ai have
been assessed to find similarities in the mean tendencies of neighboring DFT vectors of
the waterfall plot. The ai values had been considered as paired observations of the same
frequency bins over time. The initial segmentation processes showed high fragmentation
of the signal, due to the high fluctuation of p-values around α0 preliminary significance
limit. The segmentation algorithm rejects many of H

(j)
0 implying that the DFT mean

tendencies do vary significantly between many of the neighboring spectrum vectors.
Practically the number of shorter segments (in-between spectrally similar) increased.

Controlling the FWER, the Bonferroni and the Holm–Bonferroni adjustment have
been applied post hoc. Therefore, new significance levels have been calculated, and H

(j)
0

and H
(s)
0 have been reassessed.

Since the significance limits aim to lower the FWER, i.e. Type I. errors, many of
a priori pt- and pW -values from the different tests were considered non-significant post
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Figure 4.4: Multiple hypothesis tests with Bonferroni adjustment. The p
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Figure 4.5: Multiple hypothesis tests with Holm–Bonferroni adjustment, with St and
SW significance regions for the t-tests and the Wilcoxon signed rank tests respectively.
p

(s)
t and p

(s)
W are the sorted p-values from the paired t-test and the Wilcoxon signed rank

test respectively; α0 and αHB denote the a priori and the Holm–Bonferroni adjusted
significance limits respectively.
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Figure 4.6: Exemplar of the segmentation results in the time-frequency domain. Different
colors indicate different segments.
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Figure 4.7: Exemplar of the segmentation results in the time domain. Vertical lines
denote the section borders

hoc. Fewer truly significant findings within the same period mean that the ratio of
longer segment duration increased.

The segment lengths, L, and -root mean squares, RMS, characterize the resulted
segments itself, offering the possibility for the assessment of new aggregated statistics
regarding their attributes, presented in Fig. 4.8. Note that the two different post hoc
procedures gave the same solutions within either the t-test or the Wilcoxon signed
rank test, which involves that the same hypotheses had been assessed as significant
findings by the different α adjustments. However these identical results per post hoc
procedures are not necessarily identical, which is further explained in the Discussion
and on Fig. 4.9.

Segments lengths L tend to have still many shorter duration with only a few sub-
series from more extended periods in both post hoc procedures. The RMS distributions
show a not so fragmented picture in total. The testing of the shape of distributions is not
investigated here, since the 10 min duration of current measurement is not considered
significant here to draw wide-term conclusions about RVVs in general.

4.1.4 Discussion

The identical results of the two different α adjustment processes can be attributed to
the same p-values in the hypotheses rejection areas per MHT, which is not a general
conclusion, rather than an individual result of the current experiment. Namely, the two
adjustments do not have to give necessarily the same solution (per MHT). The most
condensed explanation of this can be comprehended on Fig. 4.9: first, p

(s)
t and p

(s)
W do

not have values meeting any of αB or α
(s)
HB. Secondly on the exemplar of p

(s)
t , the same

values are obtained above and below αB and α
(s)
HB, which is the case for p

(s)
W , as well.

Therefore, in current dataset the result of segmentation has not changed between the
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post hoc procedures per type of MHT (t- or Wilcoxon-test), thus:

Lt,B − Lt,HB = 0 (4.9)
RMSt,B − RMSt,HB = 0 (4.10)

LW,B − LW,HB = 0 (4.11)
RMSW,B − RMSW,HB = 0 (4.12)

where the first sub-indices t or W denote the paired t-test and Wilcoxon signed rank
test respectively; the second sub-indices B or HB denote the Bonferroni and Holm–
Bonferroni post hoc procedures respectively. However, the results of segmentation
approaches differentiated by the type of MHT (t- or Wilcoxon-test) do differ, which is
explained by the different p-values for the hypothesis between the same neighboring DFT
vectors paired. Note in Fig. 4.8 how dotted and solid lines differ at each color which is
a consequence of the test statistics being different in the t-test and its non-parametric
variant the Wilcoxon signed rank test.

4.1.5 Conclusion

A multiple hypothesis test procedure had been introduced in the current section in order
to find spectrally similar segments within the time-frequency domain of a road vehicle
vibration signal. The spectral values of neighboring DFT vectors ai have served as the
inputs of paired t-test and its non-parametric variant the Wilcoxon signed rank test.
Two different post hoc procedures, namely the Bonferroni and the Holm–Bonferroni
adjustments had been introduced after both types of test, as countermeasures against
the accountable α inflation in case of MHT.

The following section will investigate the use of different statistical tests for MHT,
such as the two-sample t-test and its non-parametric variant the Wilcoxon rank-sum
test.
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4.2 Multiple hypothesis testing by unpaired samples

Several methods have been developed for simulating non-stationary and non-Gaussian
processes in packaging vibration testing, encompassing unique methods for the segmen-
tation of road vehicle vibrations. However, only a limited number of those consider
spectral characteristics. Thus, the current section introduces a novel segmentation algo-
rithm conducted in the time-frequency domain. The spectral characteristics obtained
by short-time Fourier transform are compared by Multiple hypothesis tests (MHT) to
find changepoints in a RVV sample. Again, post hoc procedures are investigated against
the inflating Type I. error.

4.2.1 Methods

Investigation of the auto-correlation function (ACF) determines a limit above which the
signal is considered independent of previous periods. The STFT uses this limit. One
vector is a discrete Fourier transform (DFT) with elements ai,k over the bandwidth
i = 0, 1, . . . , 100 Hz at instants k = 1, 2, . . . , 600 s. The idea to highlight here is that
ai,k has individual distributions at any k. Note that this is not a spectral density but a
probability density of the DFT magnitudes, see Fig. 4.10. The logarithm on base 10
of the STFT serves as input for the MHT procedures. Two sample t-tests MHTt and
Wilcoxon rank sum tests [108, p.25-3], MHTW, assess the similarities among adjacent
sections of log-STFT. Afterward, the Bonferroni and Holm–Bonferroni adjustments are
introduced against the inflating Type I. error. Hypotheses considered truly significant
post hoc yield the borders of segments.

The RVV signal [110] is measured on a passenger car’s cockpit sampled with 1
kHz during a 10 min long journey. Its auto-correlation is investigated in Fig. 4.11
and a one second limit is assumed sufficiently long to ensure a quasi-independent
state of samples for the MHT. Thus, STFT in Fig. 4.12 is obtained with 1 s long
windows. Because the distribution of the original STFT is heavily skewed towards
lower magnitudes, a logarithmic transformation is applied to the STFT, yielding a more
symmetric representation of the magnitude histograms per second in Fig. 4.10.

The STFT resulted in K = 600 sections, offering J = 599 comparisons per MHT.
Despite the higher Nyquist frequency, the STFT are band-limited to the [0,100] Hz
interval. Central tendencies are compared by the t- and rank sum tests to find similar
segments among neighboring magnitude densities per second on the preliminary signifi-
cance level of α0. The resulted series of p-values are compared to differently adjusted
significance levels introduced in the α adjustment section.
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Two-sample t-test

Statistical inference can be made about the null hypothesis of two samples, x, y having
the same mean, using the two-sample t-test (also known as unpaired t-test). The
alternative hypothesis formulates inequality among the meansH0 : x = y;

HA : x ̸= y.
(4.13)

The two-sample t-test is a parametric test that compares location parameters of two
independent samples. Assuming equal variances of populations, the test statistic under
H0 has Student’s t-distribution with ν = nx + ny − 2 degrees of freedom, and the
pooled standard deviation replaces the sample standard deviations. Assuming unequal
variances of the two samples, the test statistic under the H0 has an approximate
Student’s t-distribution with the number of degrees of freedom given by Satterthwaite’s
approximation. This test is sometimes called Welch’s t′-test [118].

Wilcoxon rank sum test

The Mann-Whitney U -test “is the non-parametric equivalent of the t-test for means”
[119]. Albeit not the same procedure, the “Wilcoxon rank sum test is equivalent to the
Mann-Whitney U test” [120]. If t-test criteria cannot be entirely met, the non-parametric
Wilcoxon rank sum test may be implemented to assess the null hypothesis that two
samples belong to populations with equal medians.

Multiple hypothesis testing

This section investigates the assumptions of the t-test and formulates the MHT configu-
ration. The Bartlett test of the null hypothesis assuming homoscedasticity returned a
p-value of 0.00. That is, the log-STFT function does not have equal variances over time,
which is not surprising. Still, two adjacent log-DFT vectors might have equal variances,
which remains uninvestigated. This is done on purpose, as it is not suggested to auto-
mate the choice of test (parametric or non-parametric) based on the test of variances
[121, p.298]. Also, there is not a consensus choosing a test in case of heteroscedasticity
(ibid.). Since already a log-transformation is introduced, the current chapter stays at
t-test, assuming equal variances. The Anderson–Darling tests of the log-DFT vectors
showed normality 188 times; still, the t-test is robust to the assumption of normality
[108]. Under the same circumstances, the Wilcoxon rank sum test is utilized in another
MHT. The MHTs are formulated asH

(j)
0 : ai,k = ai,k+1;

H
(j)
A : ai,k ̸= ai,k+1.

(4.14)
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for k = 1, 2, . . . , J , expressing the test of central tendencies (subsequently centers)
among the k and k + 1-th vectors. Not rejecting H

(j)
0 shows two consecutive DFT

vectors having the same centers, hence an association among the vectors. Conversely,
rejecting H

(j)
0 in favor of H

(j)
A indicates neighboring vectors not having the same centers,

thus a dissimilarity among them. In the case of a significant result, a new segment
is initiated. Current MHT are deployed on α0 = 0.10 preliminary significance limits.
Although many tests are found significant preliminary, not all of them may be considered
truly significant due to α inflation resulting from simultaneous testing.

Countermeasures against α inflation, as the Bonferroni adjustment in Sec. 4.1.2 and
the Holm–Bonferroni adjustment in Sec. 4.1.2 are similarly investigated here, depicted
in Fig. 4.14 and in Fig. 4.15, respectively.
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Figure 4.15: Holm–Bonferroni adjustment αHB of the preliminary significance limit α0
beneath p

(s)
t yielding SR significance region.

4.2.2 Results

The findings of current investigations are summarized as follows:

a. MHTt and MHTW behave similarly (Fig. 4.13), yielding similar but not identical
p-values for hypotheses at the same locations.

b. Given MHTt, the Bonferroni and Holm–Bonferroni post hoc procedures yield the
same hypotheses significant in p

(j)
t and p

(s)
t .

c. Similarly, given MHTW, p
(j)
W and p

(s)
W declares the same hypotheses significant.

d. Post hoc currently, one difference is noticeable between MHTt and MHTW, ob-
servable between Fig. 4.19.b-c) at j = 8, thus between t = (7, 8] and (8, 9]
s.

e. Post hoc tests result in fewer segments compared to the preliminary tests.

f. Frequency modulation does not affect the presented method, e.g., 100–300 s.

g. Magnitude modulation affects the presented method, e.g., j = 593, thus between
t = (592, 593] and (593, 594] s. By magnitudes, the Fourier coefficients are
understood.

4.2.3 Discussion

This section introduced variations on MHT procedures supplemented by the same post
hoc tests to find segments in the spectrogram. The methods provide the following
contributions.
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a. The t-test assumes normality, the rank sum test requires symmetry in distributions.
Despite the above-discussed assumptions assured to a certain extent, this is
considered a good sign of the robustness of MHTt and MHTW, yielding preliminary
only 15 differences.

b. MHTt post hoc corrections do not yield different alternative hypotheses because
the same p-values are in the different significance regions.

c. It is similarly valid for MHTW per post hoc adjustments.

d. The scattering in Fig. 4.13 presents that the MHT procedures do not yield the
same p-value series, as expected. This scattering is also observable in the low
p-value regions between p

(8)
t and p

(8)
W .

e. The moderated number of significant p-values post hoc is again an expected
behavior since it is aimed to reduce the family-wise error rate. A thought
experiment in Fig. 4.18 shows the post hoc test’s behavior as a function of number
p-values for 599 and 5990 instances. With an increasing number of tests, post hoc
procedures yield stricter limits.

f. It is not good observable from the data (Fig. 4.16) but theoretically justifiable
that the simple rearrangement of the elements in a log-DFT corresponding to,
(e.g., at 34 s) would hold the same elements with different peak location. This
should not yield a different magnitude distribution of the DFT vector.

g. Strong magnitude modulation occurring in the spectrogram can significantly
manifest itself in the magnitude distribution of log-DFT elements (Fig. 4.17),
representing the algorithm’s capability to detect magnitude modulation.

Albeit the current findings apply only to the given 10 min long measurement (which
cannot be referred to as a representative sample of RVV worldwide) the approach
demonstrates promising results. Nevertheless, the method allows declaring segment-
borders by well-established hypothesis tests instead of a heuristic try-and-error weighting
of parameters.

4.2.4 Conclusion

Segments within a spectrogram can be found, in-between homogeneous to a specific crite-
rion. Different spectrums might simulate homogeneous segments in packaging vibration
testing. Only a few segmentation methods investigate spectral properties, considering
the discipline of PVT. Nevertheless, the number of techniques using objective hypothesis
test is alarmingly low. Thus, the current section introduced Statistical Spectrogram
Segmentation (3S), an algorithm capable of detecting magnitude modulation in the
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Figure 4.16: The unpaired t-test between 34–35th log-DFT vectors showing a slight fre-
quency modulation; STD (standard deviation), CI (confidence interval), SEM (standard
error of the mean), SED (standard error of difference).
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Figure 4.19: Result of segmentation projected on the STFT surface. Dashed vertical
lines denote segment borders; a) t-test on the preliminary significance limit α0; b) t-test
with Bonferroni adjustment; and c) rank sum test with Bonferroni adjustment.
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time-frequency domain of RVVs. The segmentation is achieved by two MHT procedures
supplemented by post hoc corrections. Overall, four implemented variations show good
agreements. Therefore, the idea of MHT for RVV segmentation accounting magnitude
modulation shows a straightforward and objective solution.

Thesis 3. The surface formed by short-time Fourier amplitude spectrum can be
segmented in the time-frequency domain due to the temporal variation of the inherited
spectral shape. This can be done by applying paired-sample- and two-sample t-tests to
the Fourier coefficients of adjacent-to-adjacent amplitude spectra. ■ Ref.: [6, 7]
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4.3 CUSUM-type changepoint detection

Non-stationary random vibrations gained increasing interest in vibration testing. A
changepoint detection procedure often manages the decomposition of Road vehicle
vibrations (RVV) when analyzing the recorded series. The current chapter introduces
the CUSUM-type changepoint detector (CpD) from Chapter 2. Some sub-steps are
restated for completeness, while others are investigated in more detail. In fact, this
section serves as a bridge toward the forthcoming methods.

4.3.1 Methods

The same source signal [110] is analyzed to present the detector comparably. Main
concepts are also restated below for completeness. The changepoint detector operates
on one-dimensional vectors; therefore, the two-dimensional short-time Fourier transform
(STFT) matrix should be described uniquely. For this reason, the spectral centroid, -
spread, -skewness, and -kurtosis, respectively µi,j , for i = {1, 2, 3, 4}-th spectral moments,
at j = 1, 2, . . . , J seconds across each k = 1, 2, . . . , K frequency bins. For completeness
Eq. 2.2–2.5 are recalled:

µ1 =
∑b2

k=b1 fksk∑b2
k=b1 sk

µ2 =

√√√√∑b2
k=b1(fk − µ1)2sk∑b2

k=b1 sk

µ3 =
∑b2

k=b1(fk − µ1)3sk

µ3
2

∑b2
k=b1 sk

µ4 =
∑b2

k=b1(fk − µ1)4sk

µ4
2

∑b2
k=b1 sk

are calculated [77, pp.371, 281, 299, 317], on view in Fig. 4.20. The four spectral
descriptors of a sample are introduced to the algorithm in Fig. 4.23. The resulting
four series of changepoints are concatenated and handled as the final segmentation in
the time-frequency domain. In a CUSUM scheme, the cumulated sum of differences
µi,j − µj i, such as Eq. 2.10,

Si,k =
J∑

j=1
(µi,j − µj i). (4.15)

can evaluate sudden changes in the mean tendency, indicating a Candidate changepoint
(Cpc), a corresponding exemplary depiction can be found in Fig. 4.22. As introduced in
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Chapter 2, the following step excavates resampling techniques to assess the significance
of Cpc. The method is based on Eq. 3.2 such that an actual sub-series µi,j, j ∈ [Lj, Rj]
is rearranged as of j, an N number of times. Every time a permuted sample produces a
more extreme test-statistic, Ŝr, than the observed one, Ŝ(i,j), from the original sample,
the approximated p-value increases by 1/N starting from p = 0:

p̃ = 1
N

#
{
Ŝ < Ŝr

}
. (4.16)

The test statistic utilizes the same equation above (Eq. 2.10). Given that the
approximated p-value stays below the threshold α, the changepoint is considered
positive, i.e., Cpc → Cp. Finally, each subsection is subjected to the same steps until
any exit conditions are encountered.

Once all four spectral moments are segmented, the series of changepoints are
concatenated, unique elements are sorted out, then ordered ascending

Γ = #
{ 4⋃

i=1
γi

}
.

Fig. 4.20 presents the STFT matrix overlaid by CP from the four spectral moments,
beneath, individual spectral moments with corresponding changepoints are indicated.
The CpD is run at α = 0.05 significance level, using R = 104 permutations.

4.3.2 Results

The STFT matrix is segmented over time, and each changepoint is considered valid in
the whole width of the frequency domain. The underlying reason is that agglomerate
statistics are analyzed in the form of spectral moments, i.e., any of Eq. 2.2–2.5 uses every
frequency bin in the summation. The result of segmentation is depicted in Fig. 4.21,
revealing mostly plausible results. The strong harmonic components around ∼ 75 s
and ∼ 550 s are found, each being segment. The latter recording section holds another
changepoint at ∼ 575 s found by spectral skewness in Fig. 4.20.d). Other instances
in the STFT might be judged by human eyes as they were lacking changepoints, e.g.,
harmonic components decrease until 300 s, after that increase. Also, an intermittent
frequency modulation can be found in the whiter region around ∼ 75 sec. It is apparent
that neither the current procedure escapes false negatives. Besides, one could rightly
suppose also false positives, investigated in the next chapter.

Although, the fact of changepoints being present is not always enough. The current
thesis aims to provide a simulative approach based on the spectral characteristics, but
the question of how long a spectrum should be simulated is partially postponed to
Chapter 6. The most convenient appraisal remains the distribution of the segment
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Figure 4.20: Segmentation by CUSUM of recording [110]. Pane a) shows the short-time
Fourier transform (STFT) plane overlaid by changepoints (black). Subsequent panes
show the spectral moments (black), such as: b) spectral centroid, c) spectral spread, d)
spectral skewness, and e) spectral kurtosis, with the corresponding changepoints (gray).
Note that changepoints are connected by solid gray lines only to ease the readability.
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Figure 4.21: Segmented spectrogram by the CUSUM method, dashed lines indicating
global changepoints.
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Figure 4.22: The spectral centroid of the recordings (black) with its first, total cumulative
sum (gray) and the found changepoints (circles).

lengths, L, accompanied by the RMS content, R. The probability mass functions of the
two statistics are to be found in Fig. 4.24. Interestingly, the typically assumed normal-
or uniform distributions would have been a seriously departed guess from the actual
observations. While the current section does not aim to fit distributions and overlooks
the test for normality or uniformity, a quick look at them should be a subjective but
sufficient justification. Its practical consequence holds that

a. the spectral characteristic does not vary in such usual patterns (normal or uniform),

b. the segment length distribution is heavily left-skewed,

c. the RMS content distribution is moderately right-skewed.

One can expect many short segments and only a few long-sustained segments. Also,
one can expect only a few low RMS sections during a trip, a typical vibration level, and
some higher RMS sections. The joint distribution will be introduced in the Discussion.

4.3.3 Discussion

It can be understood that the CpD inherently uses prior statistics; in fact, the two
steps of spectral moment calculation and the changepoint detection are fundamentally
different. Therefore, much of the efficacy in CpD is predestined by its inputs. To
find candidate changepoints, thus, sufficiently varying inputs are necessary. Chapter 2
derived the degree of non-stationarity, which is a posterior observation. Prior analyses
may understand the variability, first, in the FD moments. Fig. 4.20.b–e) showed this
variability in a promising fashion. Those are assessed in Fig. 4.24 in the probability
domain, appended to the segment RMS distribution. Of course, not every segment
length can mimic any RMS content; therefore, the joint distribution is favorable. Such
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Figure 4.23: A CUSUM-type changepoint detection framework. Let Lj and Rj denote
respectively the left and right boundaries of a sample of length T or its sub-sample.
Also, let dt denote the minimum segment length, here 1. The CUSUM points to a
candidate changepoint Cpc, which, if considered significant, becomes Cp. The procedure
runs until no more changepoint can be found, or an exit condition is met.
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Segment length and -RMS probability distributions
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Figure 4.24: Probability mass function of segment lengths in pane a); and -RMS in
pane b).

Joint distribution of segment length and RMS
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Figure 4.25: Joint distribution of probability mass functions in pane c). Pane a) shows
the probability mass function of segment RMS contents, and pane b) the probability
mass function of segment lengths. Note, we cannot assume any pair of segment length
and RMS content.



4.3. CUSUM-TYPE CHANGEPOINT DETECTION 69

Table 4.3: Coefficients of variation [%] for the first four spectral moments in two
measurements.

[%] cv [µ1] cv [µ2] cv [µ3] cv [µ4]
[110] 6.32 9.14 47.42 27.02

B 13.97 7.03 42.07 25.61

Probability mass functions of spectral moments

in the external recording see caption for citation of record
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Figure 4.26: Spectral moments’ distributions of recording [110], such as a) spectral
centroid, b) -spread, c) -skewness, and d) -kurtosis.

a map is illustrated in Fig. 4.25. Sample B from Chapter 2 is chosen for verification
because it has similarly one longer stop at a red light during the trip, and the gauge was
also installed on the cockpit. The pre-processing covered the numerical elimination of
the DC frequency but had been band-limited up to 100 Hz to facilitate the comparison
with measurement in [110]. The spectral moments in the two measurements are in
certain proximity regarding central and range tendencies. The shape of distributions
in Fig. 4.26 better expresses the mix of travel and presumably stop sections; Fig. 4.27
shows that tendency moderately. It is worth noting the severe coefficient of variations,
cv = σ/x, reported in Table 4.3.

4.3.4 Conclusion

The most widely used assumptions—when facing an unknown phenomenon—of normal-
ity and uniformity has been alleviated by the analysis regarding the segment length
and -RMS distributions. In fact, the referred distributions are respectively heavily- and
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Probability mass functions of spectral moments

in the recording B from Chapter 1
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Figure 4.27: Spectral moments’ distributions from the measurement B (in Chapter 2),
such as a) spectral centroid, b) -spread, c) -skewness, and d) -kurtosis.

moderately right-skewed. Thus, it necessitates investigating the joint distribution to
find pairs of typical RMS content on typical length. The word, typical is emphasized.

The spectral moments in RVV are likely to show up severe coefficient of variations,
which facilitates changepoint detection. If changepoints exist, the introduced algorithm
shows the borders, where the mean of the input signal is likely to change. Therefore,
the mean varies in subsections, and it rightly suggests a varying probability structure,
hence non-stationarity.

4.3.5 Postscript

Chapter 2 introduced available tests for non-stationarity and pointed out inconsistencies.
The principal definition of strong and wide sense non-stationarity of stochastic processes
is cumbersome to justify either from one realization, even from an ensemble.

Let us suppose that an infinitely long measurement is obtained. Apart from the
DC component, i.e., observing only the relative accelerations, the travel would be most
likely to start and end at zero accelerations. We may conclude in practical terms that
the process is stationary.

Let us further suppose that the infinitely long measurement could be reproduced
many times, perfectly in the same trajectories, so we may obtain an ensemble. If the
distributions along the randomness, Ω, do not change with time, we may conclude also
in statistical terms, that the process is stationary.



4.3. CUSUM-TYPE CHANGEPOINT DETECTION 71

STFT of the sample, its spectral moments and corresponding changepoints
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Figure 4.28: Segmentation by CUSUM of recording B. Pane a) shows the short-time
Fourier transform (STFT) plane overlaid by changepoints (black). Subsequent panes
show the spectral moments (black), such as: b) spectral centroid, c) spectral spread, d)
spectral skewness, and e) spectral kurtosis, with the corresponding changepoints (gray).
Note that changepoints are connected by solid gray lines only to ease the readability.
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What we cannot assume neither in practical nor in statistical terms, that the
probability structure will be time-independent during the travel. That is, variability of
the vertical accelerations changes with time in the presence of surface discontinuities,
by stopping the car at red-lights, etc. Therefore, the assumption of being subjected
to the same vibrations, e.g. constant RMS, is against common sense and practical
experiences. While RMS variations had been studied extensively in the literature,
the current dissertation has presented various spectrograms also showing-up frequency
modulations, hence, not only the vibration levels but also frequency structure changes.
Chapter 6 argues, that RMS variations are the result of changing structure in the
time-frequency domain. In fact, both are the manifestations of the dynamic system
being subjected to road excitation.



Chapter 5

Calibration of segmentations

Simulation of non-stationary random vibrations has motivated Packaging vibration
testing for decades. Often, an event-detection algorithm decomposes Road vehicle
vibrations when analyzing the recorded series. However, also often, heuristics and
subjective justifications are provided, whereby the papers are foremost concerned with
validating the non-stationarity of simulated signals. If a changepoint detection is
inherent to the procedure, it is recommended to calibrate the detector. The current
chapter concerns the Receiver operating characteristics (ROC) of two novel algorithms
and provides contextual support by Segment length distributions (SLD).

5.1 Compared detectors

5.1.1 CUSUM-type changepoint detection

The CpD approach—realized after [73]—is applied to the first four spectral moments of
STFT, denoted by µij for i = 1, 2, 3, 4 and j = 1, 2, 3, . . . , J seconds of the time-frequency
domain. The four series of changepoints (Cp) are unified, dissecting a spectrogram
at specified instances. The CpD uses the cumulative sum of differences between the
sample element and the total mean, such as

Sij =
J∑

j=1

(
µij − µij

)
(5.1)

A sudden change in the direction of Sij at Ŝij = maxj |Sij| indicates a possible change
in the mean tendency. At each candidate Cp, a type of bootstrapping can evaluate
the significance of the test statistic. Here, a permutation loop is implemented for
r = 1, 2, . . . , N rearrangements, such that Sij → Rij′r, j not necessarily equaling j′ per
r. The (resampled) test-statistic R̂ij′r is accounted at each Cpc. Simply put, p̃ = 0
confidence is voted for Ŝij before resampling, each time a counter-evidence is found, p̃

73
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increases with 1/N . Formally, the approximated p-value is

p̃ =
#

{
R̂|R̂ > Ŝ

}
N

, (5.2)

where # denotes the number of elements. If p̃ stays smaller than a threshold, the Cp is
considered significant, and the series is bisected. Each subsection is introduced to the
same procedure until no more Cp is found, a minimum segment length is reached, or
exit conditions of an infinite while loop are encountered.

5.1.2 Hypothesis-based spectrogram segmentation

In the previous sections, consecutive DFT profiles of the STFT had been segmented by
significant changes according to (one-sample) paired t-tests [7] or (unpaired) two-sample
t-tests [6]. The STFT spectrogram was transformed here by log10 operation to bring
the normality-assumptions closer. The paired t-test among consecutive spectrums j

and j + 1 is used in the followings, on reasons discussed in Sec. 5.1. For d = x − y
paired vectors, the corresponding hypothesis can be formulated, such as:H0 : d = 0;

HA : d ̸= 0.
(5.3)

The frequency axis ensures the pairing between neighbor DFT vectors. A Cp is inserted
if there is enough evidence against H0. However, inflating Type I. error is accountable
in multiple hypothesis testing; thus, post hoc correction might compensate for the
inflation.

5.1.3 Hypothesis-based spectrogram segmentation with Bon-
ferroni correction

Family-wise error rate, αfw, increases in multiple hypothesis testing, i.e., an increasing
probability of at least one Type I. error is accountable. The Bonferroni correction
expresses for m comparisons conducted on the same preliminary significance level, α0,
that the probability of no α error for the overall family of m tests is [109]: αfw =
1− (1−α0)m, where m equals the number of comparisons, i.e., the number of spectrums
minus one. With post hoc correction, individual decisions are overruled by the new

αB = α0/m (5.4)

Bonferroni significance limit.
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5.2 Methods of comparison

It is found necessary to summarize the abbreviations for the three procedures, such
as CUSUM-type changepoint detection (CpD), Hypothesis-based spectrogram seg-
mentation (3S), and the Hypothesis-based spectrogram segmentation with Bonferroni
correction (3SB). Where it is not of particular interest, which type of hypothesis-based
procedure is concerned, 3S(B) notation is used.

The investigations resemble the same logic, such as the establishment of samples
(5.2.1), derivations of technological windows and the choice on Points of interest (POI)
(5.2.2), the Receiver operating characteristics (ROC) (5.2.3), and the Segment length
distributions (SLD) (5.2.4).

5.2.1 Establishment of samples

The simulation, introduced in Chapter 6, is used to synthesize RVV. Here some key
attributes are mentioned in advance. The method simulates statistically well-aligned
DFT profiles per second of segments, and in each segment a different profile is chosen.
The data-driven approach relies on real-world RVV; thus, it is understood as a mixture
of artificial and natural RVV. Noteworthy, that changepoints (Cp) are known in advance
and thus, the condition positives (CP) are also known. The first ensemble of four series
(A,B,C,D) with different prevalence is subjected to CpD on the first hand. Samples are
depicted in Fig. 5.1. The second ensemble consists of three series (E,F,G), prepared
with high prevalence for 3S(B) procedures, see Fig. 5.2. Furthermore, each of the latter
three samples is further trisected to supply similar prevalence but on different lengths, J .
Also, the first ensemble is used later in Section 5.3.3, confronting CpD and 3S methods.

5.2.2 Operation surfaces and points of interests

The Eq. 5.5 expresses that a given number of permutations are necessary (at least as
extreme as the un-resampled test-statistic) to consider a candidate Cp insignificant.
This way, the concept of Significance reserve can be introduced.

Definition 1. The significance reserve, SR, denotes the number of permutations
necessary to consider a candidate changepoint non-significant in a resampling scheme
when a rearrangement of x → r yields at least as extreme test-statistic, r̂ as the un-
rearranged sample, x̂, for n = 1, 2, . . . , N resampling. The fraction of α/N significance
portion is accumulated for p̃ = 0, each time r̂ > x̂.

In other words, the significance reserve describes a reserve of staying significant for a
candidate changepoint. While the rearrangement of elements is a matter of randomness,
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a) STFT and CP in sample A with PR=4.5%
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Figure 5.1: Short-time Fourier transform of the samples A,B,C,D. Changepoints, i.e.,
condition positives indicated by bars, | on the horizontal axes.

Figure 5.2: Short-time Fourier transform of the samples E,F,G.
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Figure 5.3: The Significance reserve surface (gray) with 12 points of interest in the
cross-sections of iso-permutation curves N = 200, 1000, 4000 and iso-significance limits
α = 0.01, 0.05, 0.25, 0.50. Each point is above the minimum number of permutations
(dashed).

the closest parameters of influence are α and N , which can be expressed as

SRS = α

1/N
, (5.5)

depicting the Significance reserve surface (SRS), illustrated in Fig. 5.3. The POI avoid
the lower limit of SRS = 1, also N = 4000 permutations constitute an upper limit due
to computational practicality.

In the case of Bonferroni correction, Eq. 5.4 is illustrated in Fig. 5.4. Special
considerations worth mentioning. The number of hypotheses to test is not always a
matter of choice; here, the length of samples skeletonizes different scenarios. Also, few
investigations are available on the number of Cp in RVV. At last, α0 > 0.10 significance
limits are atypical, but this chapter explores the operation in large perspectives due to
the novelty of 3S(B).

5.2.3 Receiver operating characteristics

Consider a population with a priori prevalence, PR, of an arbitrary condition. The
condition may be the real presence of disease (condition positives, CP) among the
healthy individuals (condition negatives, CN). In time-series analysis, e.g., shocks can
be present in a random vibration signal, as in Fig. 5.5.a). Let us suppose an RVV is
recorded, and a particular statistic is obtained per second. Let us further suppose that
we could precisely discern shocks (CP) from stationary Gaussian random vibrations
(CN) possessing sufficiently good values of the statistic. Further, we aim to investigate
different thresholds for the given statistic, by which, we could distinguish shocks (S)
from shock-free vibrations (V) in future observations. In the same pane, a binary
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Table 5.1: Confusion matrix for a binary response

Prediction MetricsDP DN

Reality CP TP FN TPR=TP/CP; FNR=FN/CP
CN FP TN TNR=TN/CN; FPR=FP/CN

DP: positive by decision; DN: negative by decision
FNR: false negative rate; TNR: true negative rate

logistic model is fitted to 100 shock- and 100 vibration statistics data. Thus, if

PR = CP
CP + CN (5.6)

then 50% prevalence is present in the example. Let the rhombus symbol denote our
first guess of a threshold in the same plot. Then, most shocks are correctly considered
positive answers above the threshold, contributing to true positives (TP). On the other
hand, shocks below the threshold are incorrectly classified as vibration, and hence, false
negatives (FN) are obtained.

Table 5.2: Prevalence of samples E,F,G, according to samples A,B,C per the i = 1, 2, 3-
th sub-samples and corresponding points of interest per row for the hypothesis-based
segmentation

i E F G POI
1 18.63% 18.63% 11.76% 1,2,3
2 14.93% 21.89% 15.42% 4,5,6
3 16.44% 17.04% 17.39% 7,8,9



5.2. METHODS OF COMPARISON 79

Receiver operating characteristic
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Figure 5.5: An exemplary classification task. Pane a) binary logistic model (BL) of
vibration (V) and shock (S) events with corresponding values and an arbitrary threshold
denoted by rhombus. Events with values lower than the threshold are categorized as
vibration (V!); conversely, supra-threshold values are considered shocks (S!). Pane b)
receiver operating characteristic as of thresholds, also highlighting the consequence of
the initial choice. The ROC curve suggests that the BL model is comparatively better
than guessing here.

Typically, the control group is investigated similarly. Vibration values below the
threshold are correctly classified as vibration constituting to true negatives (TN), and
vibrations above the cut-off are falsely classified as a shock, yielding false positives (FP).
It is in a common interest to evaluate the true positive rate, TPR = TPR(t) being a
function of threshold, t; in other terms, the sensitivity, such that

TPR = TP/CP, (5.7)

which is “the probability that a person will test positive for a disease, given the person
actually has the disease” [107, p.484]. It may be translated as “the probability that a
classifier will classify a pattern as a target when it really is a target” [122, p.378]. In
the low base rate problem, with rate corresponding to a condition or behavior, it can
occur that tests designed to discern rare conditions can find TP, however, beneath
an unexpectedly large number of FP. Thus, it is wise to measure the true negative
rate, TNR = TNR(t), namely specificity, which is “the probability that a person will
test negative for a disease, given the person actually does not have the disease” [107], in
other terms “the probability that a classifier will correctly classify the true nontarget
cases” [122]. It is commonly expressed as TNR = TN/CN, and it occurs that the false
positive rate FPR = 1 − TNR, or directly

FPR = FP/CN, (5.8)

denoting the ratio of false positives among the (truly) condition negatives. The confusion
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matrix and frequent statistics are introduced in Table 5.1 on page 78. The ROC curve
for the introductory examples can be seen in Fig. 5.5.b).

5.2.4 Segment length distribution

The series of Cp indicate the borders of segments in the STFT at given instances denoted
by “|” symbols at f = 0 Hz in Fig. 5.1. The Cp is considered to be simultaneously
present in every frequency bin, visually as vertical lines at the “|” symbols. The
horizontal distance between two Cp, namely the segment length is in the center of
interest, which is investigated on count-based Segment length distributions (SLD).

5.3 Results

5.3.1 Evaluation of changepoint detection

The CpD is run on the four samples of different prevalence classes, evaluated at the
12 POI on the SRS from Fig. 5.3. The ROC statistics are here snapshots of the ROC
curve in Fig. 5.6. The general observations are:

a. the prevalence has much influence at low α; with increasing PR, the effect
decreases,

b. low PR tends to yield higher TPR; conversely, high PR can deliver low TPR,

c. the number of permutations produced minor differences at iso-significance settings;
see rows of Fig. 5.6.

d. it is hard to approach FPR regions of 50%; see last row of Fig. 5.6.

Segment length distributions in Fig. 5.7 directly show the number of segments, #, in
the bins. It supports that

e. the number of resampling, N , produced few differences in the obtained distribution.

Thus, further investigations concentrate on PR and α. It is deduced, that:

f. false positives contribute to over-segmentation, and

g. false negatives contribute to under-segmentation.

Furthermore, Fig. 5.7 suggests that

h. there exist an α threshold for each PR, minimizing the erroneous statistical
inferences.
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ROC snapshots of CPD at 12 POI
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Figure 5.6: ROC snapshots of the CUSUM-type changepoint detection (CpD) on four
different samples with different prevalence according to symbols at 12 POI according to
panes. Rows of panes correspond to iso-significance limits, α; columns of panes relate
to iso-permutations, N . Note that the significance reserve, SR, varies per POI.
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SLD of CPD by samples A,B,C,D
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Figure 5.7: Segment length count-distributions from the CUSUM-type changepoint
detection (CpD) on four samples. Bars denote the true distributions; lines correspond
to the number of permutations. Panes correspond to different samples, each tested
on iso-significance limits at different permutations. Note how different permutations
yielded overlapping lines.
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5.3.2 Evaluation of hypothesis-based segmentation

The 3S(B) is applied to the three samples E,F,G aimed to possess a similar prevalence
of ∼ 17%. Each sample are divided into sub-series i = 1, 2, 3 of length ∼ 100, 200, 2000
sec corresponds to nine POI. The subdivision changed the sample-wise PR, as expected,
which are summarized in Table 5.2 with corresponding POI in Fig. 5.4. Also, Fig. 5.8
shows the 3S method without correction (black) and with post hoc correction (gray).
Similarly, the ROC snapshots of 3S(B) allow the following observations according to
Fig. 5.8:

a. low α0 yielded low FPR and medium to high TPR,

b. medium α0 yielded medium FPR and high TPR,

c. high α0 yielded high FPR and high TPR,

which is a good justification of the expected ROC. Regarding sample sizes,

d. the longer the sample, the more rigorous the TPR & FPR estimations are.

With post hoc set up on Fig. 5.8 (gray symbols),

e. minimal FPR is registered, the mean TPR being dispersed around 0.5.

Fig. 5.9 compares the count based SLD after 3S, each pane illustrating a given sub-sample
with three different preliminary significance limits. It is concluded that:

f. high thresholds are likely to yield over-segmentation, low α is the best guess in
general, given the current ensemble,

which success must be accredited to the paired t-test. Results of 3SB in the probability
domain are omitted from here; further explanations are given in the Discussion. The
following subsection directly collides CpD and 3S.

5.3.3 Competing comparisons

So far, the behavior of CpD, 3S, and 3SB has been explored, but a direct comparison
could not be conducted without the above observations. The following experiences are
echoed here:

– the hereby concerned CpD realization does not necessarily require immense
iterations per candidate Cp,

– the sample length is indifferent to significance limits in CpD and 3S—not so in
3SB,



84 CHAPTER 5. CALIBRATION OF SEGMENTATIONS

– Bonferroni correction may be overlooked, and directly 3S results can also be
helpful,

– short recordings with high PR were necessary for 3S for demonstration purposes.
(Note that the long sample-low prevalence setting operation could not be shown.)

Thus, CpD and 3S are rerun on samples A,B,C,D with N = 100 replications in case of
CpD; and without post hoc correction of 3S. In both cases, mutual significance levels are
applied1. The ROC characteristics are displayed in Fig. 5.10 by the four different PR
classes. Therein, pane a) confirms that an increase in PR can flatten the ROC curve of
CpD. Remarkably, CpD can hardly pass the FPR = 0.50 limit with increasing α, which
must be accredited to the exit conditions. However, pane b) depicts 3S as being quasi
prevalence-independent, which could not reach below TPR = 0.50 in current samples.
However, this satisfactory performance is not a general conclusion, as Fig. 5.8.a) black
rhombus instantly falsifies that.

5.4 Discussion

In brief, it was aimed to find all real changepoints, Cp, as true positives, TP; beneath
not-being oversensitive, i.e., with consistency on TN. It is shown that FP often corrupts
these aims leading to over-segmentation. When numerous false alarms occur, the
obtained distribution can overestimate short segments and underestimate long segments.
In contrary terms, the modest sensitivity can increase FN, which kind of over-look of
real changes can result in under-segmentation; thus, SLD might be under-represented
in lower bins and over-estimated in larger bins.

5.4.1 Arguments on detection methods

The number of resampling applied to the given samples did not yield dramatically
different results, suggesting that CpD can be robust enough also at a moderate number
of permutations. However, the analyst is advised that the recursion can suffer a severe
failure when a FN is incurred in one of the first p-value approximations. Then, simply
due to randomness, a prominent changepoint is left out, the loop exits and a dramatic
under-segmentation is obtained.

Let us suppose that the prevalence is precisely 50%, i.e., every 2-nd sec. is different
from neighboring ones. Then, in the hypothetical spectrogram of [a, b, a, b, a, . . . ],
with DFT vectors sufficiently different a and b, the CpD may encounter that the
absolute of CUSUM of a spectral moment does not have a maximum. Above 50%
prevalence, however, one must consider, either (a) transients are occasionally present in

1α = {0.01, 0.05, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 0.99}
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ROC snapshosts of 3S(B) procedures at 9 POI
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Figure 5.8: ROC snapshots of Hypothesis-based segmentation without Bonferroni
correction (3S) denoted by black symbols and (0) subscripts; and 3S with Bonferroni
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an underlying slowly varying process, or (b) mainly successive transients describe the
process. While (a) is more straightforward to imagine under everyday circumstances,
such as traveling on roads and occasionally meeting some potholes, setting (b) can arise
from driving on off-road tracks, for example. It is expected that 3S can overcome such
limitations incurred in RVV during the latter case (b).

3S(B) methods rely on the one-sample t-test here, which omits a data-driven
resampling, thus, can be performed under every prevalence scenario. It shall be
appreciated that the one-sample t-test derives its test-statistic still from two samples:
precisely, the differences of two paired samples. Therefore, the differences of two
DFT profiles along the whole bandwidth of the spectrum contribute to the estimation.
The two-sample (or unpaired) t-test accounts for the two samples differently. Let the
following minimum-example use DFT vectors of a = [1, 1, 2] and b = [2, 1, 1] ordered as
of [f1, f2, f3] frequency components, depicting a frequency modulation from a to b. It
is apparent that the vectors a & b are the “same” for the two-sample t-test, which does
not take the sequence—hence such a frequency modulation—into account. Instead, the
two-sample t-test is better to examine overall magnitude modulations by the scenario
of, e.g., increasing background noise such as from a = [1, 1, 2] to b = [1, 2, 2].

Despite the Bonferroni correction being a mature method, contributing to a whole
branch of statistics, its application remained more-or-less chaotic as pointed out, e.g.,
in the ophthalmic discipline [123]. Some thoughts of ibid. will be borrowed here and
put into the current context. Foremost to highlight here the subtle narrative, the use of
Bonferroni correction sometimes depends on the intentions—though not the wishes of
the analyst. For example, if it is aimed to assess a universal null hypothesis that all
tests are non-significant, i.e., there is no change (at all) in the RVV, then Bonferroni
correction can improve the reliance of the general H0. Similarly, if it is imperative
to avoid a Type I. error, that is, important costs can be attributed to inserting a
changepoint, then applying the post hoc correction can also be imperative. But as
shown in Fig. 5.8, CP can be left out, as well. Conversely, no correction had been
suggested in exploratory studies concerning the search for any significant difference; or
if the individual tests’ results are important. The numerical investigations presented in
Fig. 5.8. also clearly support, that “reducing the chance of a Type I. error, but at the
expense of a Type II. error” (ibid.). Seemingly, the Bonferroni correction does mitigate
Type I. errors but at consequences of increasing false negatives; hence, it cannot provide
SLD reasonably well-aligned. Still, the post hoc test may be beneficially implemented
in general-null testing.
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5.4.2 On the receiver operating characteristics

ROC curves are mainly used on two occasions: comparing classifiers and deriving a
classifiers’ optimal operating point (OOP). Numerous proposals have been made so
far on OOP [124], also an OOP shall be justified in the given context. The interested
reader is referred to [125] for examples of justifications. The simple “closest to [0, 1]
criteria” is presented here, referring to the point closest to the top-left corner on the
ROC plot. Formally, dE =

[
(FPR2 + (1 − TPR)2

]0.5
denotes the Euclidean distances

between the ROC curve and the [0, 1] coordinate. It is found in Fig. 5.10.a) that the
point of (0.09,0.72) relates to the minimum dE corresponding to α = 0.10 significance
limit in 3S—according to the given rudimentary curve. The corresponding SLD suggest,
that a low prevalence sample on pane b) could not be adequately modeled. However,
high prevalence sample on pane c) depicts the reasonable well-alignment of 3S; also,
the over-conservatism of the Bonferroni correction is presented in either case, b-c).

5.5 Conclusion

3S(B) and CpD rely on established methods. 3S(B) are comparatively faster than
CpD. 3S(B) are easier to implement. If CpD exits suspiciously early, it contributes
to under-segmentation. 3S can be run on the contrary. The Bonferroni correction
again proved to be too conservative. Current challenge points toward the estimation
of prevalence. In a low base rate problem, CpD is suggested, and can be suited for
high PR classes. High prevalence samples can be beneficially analyzed also by 3S if
resampling schemes are not favorable. It is generally advised to strive for the robustness
analysis of detectors in changepoint detection methods.

Thesis 4. I have shown that there exists a significance level and it can be deter-
mined for so-called CUSUM recursive algorithms—which algorithm searches for the
local extrema of the cumulative sum of deviations from the total mean—which signifi-
cance level minimizes the difference between the theoretical distribution of the segment
lengths of the test signal and the segment length distribution between the detected
boundary points. ■ Ref.: [8, 9]



Chapter 6

Simulation

This is the last before one technical chapter with new concepts, thus, it is found
reasonable to reiterate on all necessary steps toward current final application, the
numerical simulation of spectrally non-stationary RVV. In fact, the next chapter will
investigate future following segmentation.

Vibration testing procedures relying solely on a Fourier profile can introduce only
stationary random vibrations. It is in contrast with the non-stationary and non-Gaussian
nature of the Road vehicle vibrations (RVV). The following procedure segments the first
four spectral moments of the time–frequency domain of RVV, constructs probability
density arrays per frequency bins, and perform simulations according to random segment
lengths and -root mean squares, yielding more realistic representations of RVV. The
distribution of time- and frequency domain moments and normalized spectral entropies
are confronted. The Probability-based spectrogram synthesis (PBSS) offers a data-driven
stochastic modeling framework for simulating non-stationary RVV.

6.1 Introduction

A Power spectral density (PSD) profile, joint with a uniformly distributed random
phase series, can only contribute to stationary Gaussian vibrations by inverse Fourier
transformation. Widely accepted that an ideal simulation shall introduce varying RMS
levels, transients, and harmonic excitation as the constituents of Road vehicle vibration
(RVV). The Packaging vibration testing (PVT) community lined up different algorithms
to break down RVV into its constituents. Unfortunately, also purposeful decompositions
are inherently suggested. Then, a superposition or concatenation of simulated segments
concludes a simulation.

As consensus on decomposition is pending, the current study presents that σ-
modulation, transients and harmonics can be simultaneously addressed directly in the
Time–frequency domain (TFD). Moreover, the modulations in the Short-time Fourier
transform (STFT) plane readily depict any constituent, reducing the need for heuristics

91
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and a priori assumptions. Furthermore, the multi-level probabilistic environment
assures that synthetic TFD are non-stationary; consequently, varying Time domain
(TD) characteristics are obtained.

Section 6.3 describes three RVV measurements and the simulation routine. Sec. 6.4
presents that arbitrary number of different STFT can be simulated from one mea-
surement; also, a second run illustrates that the pooled sampling of numerous STFTs
produces enhanced simulations. It is followed by verification of synthetic signals’ non-
Gaussian and non-stationary nature. Finally, Sec. 6.5 shows modeling of segment length
and -RMS distributions obtained by the segmentation of spectral moments.

6.2 Related works

Although, Time-history replication (THR) is a straightforward approach for non-
stationary RVV testing, it cannot be considered a simulation due to the lack of rep-
resentative manner on an ensemble of journeys [126]. Kurtosion® [127, 128] or the
distortion of waveforms via Zero-memory nonlinear (ZMNL) monotonic functions [129]
achieves different-from-normal distributions, but synthesized vibrations remain statisti-
cally time-invariant [38]. The Two-way-, Three-way- and subsequently Probability split
spectra provide a few spectrums by allocating sub-recordings into groups of vibration
levels, groups being characterized by average PSD profiles [130, 131]; still, stationarity
for prolonged sub-periods is apparent in time domain.

Changepoint detection (CPD) gained increasing emphasis to segment recordings [5].
A Bayesian approach is implemented on a series of International roughness indices [90],
but the study did not address simulations. The moving mean square drop-off distance
and crest factor separate quasi constant RMS segments and transients in road elevation
profiles [85]. Simulations can be conducted by superimposing transients on a series
of σ-modulated Gaussian components. The general approach of moving statistics is
prone to the window length and threshold value subjectivity. The Random Gaussian
sequence decomposition utilized a CUSUM scheme on the analytic signal obtained by
Hilbert transform to find stationary sections within the vibration series [98, 132]. The
simulative modulation functions do not necessarily resemble TFD characteristics.

The Short-time Fourier transform (STFT) plane of RVV is segmented in multiple
comparison procedures using paired t-tests [7] and two-sample t-tests [6] between
consecutive DFT vectors. While post hoc procedures are often advised in multiple
comparisons, the sensitivity and specificity are affected by the post hoc procedures,
which already have been investigated in Chapter 5.

Quarter vehicle models subjected to longitudinal pavement profiles simulate also
varying traveling speeds and different parameters of vehicle models [48]. Alternatively,
Frequency response functions (FRF) can be used in conjunction with road elevation PSD
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[133]. However, the experimental estimation of vehicle FRF can be contra-implicated
by cost-efficiency; otherwise, it may remain too generic.

The applicability of the Discrete- (DWT) and Continuous wavelet transforms (CWT)
is presented on artificially introduced transients [100]. Low-pass filtering separates
rigid-body motions and structural vibrations of rail-car vibration PSD, supporting
shock-on-random simulations [101]. The fundamental assumption that transients occupy
different bandwidths from the one comprising rigid-body motion would need thorough
testing on the road vehicle vibrations instead of railed vehicle vibrations. Intrinsic mode
functions (IMF) have been proposed for studying frequency-type non-stationarities [102].
The inherent subjectivity of the number of IMFs separating low- and high-frequency
components persists.

Wavelet-based Gaussian decomposition presents that CWT regions of the RVV not
surpassing the CWT of a Gaussian equivalent can be considered a Gaussian segment
[103, 104]. The RVV is decomposed iteratively, but the first Gaussian equivalent may
be biased by transients contributing to wider segment borders. The Shock extraction
method provides segmentation according to the moving crest factor joint with one-tenth
peak value considerations [87]. Segments are simulated as Gaussian equivalents and
concatenated into a series, the last part comprising each shock. Components could be
rearranged to counteract the fatigue life’s unrealistic representation [89, p.365]; still, the
segmentation’s rigorousness is mainly challenged by the sensitivity of moving statistics.

The Hilbert amplitude spectrum is segmented per frequency bin through time using
a CUSUM scheme [105]. Amplitudes in each segment of every frequency bin are fitted
with various distributions. A frequency bin throughout its segments is characterized
by one distribution model of amplitudes with the lowest Kullback–Leibler divergence.
While changepoints can be found in each frequency bin, those do not necessarily align
in time. While it allows remarkable simulations, replacing segments was presumably
out of scope and, thus, it does not necessarily serve PVT applications. The authors
further improved the method later. The Hilbert spectrum simulation was achieved by
the former process [105], while the phase function has been modeled as the composition
of a time-related part and an autonomous, random component [134].

The Karhunen–Loève expansion and translation process theory can model non-
Gaussian and non-stationary random processes [135]. By iterating directly on the
non-stationary auto-correlation function, the technique enhances the ITAM—an exist-
ing family of procedures, the Iterative translation approximation method. Also, the
combination of the Karhunen–Loève expansion with the Linear-moments-based Hermite
polynomial model is implemented [136]. The Inverse system method applied in the time
domain controls time–frequency domain characteristics, demonstrating the numerical
example of a cantilevered beam and a bi-axial vibration test [137].

Machine learning classifiers are also used for transient event detection, using different
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branches of predictors from various domains simultaneously, presenting an excessive
contribution to understanding transient detection in RVV [50].

6.3 Measurements and Methods

Three RVV series have been recorded, denoted as xn for n = 1, 2, 3. The chauffeur and
its companion (app. 150 kg in total) traveled in a passenger car (Suzuki Swift Sedan
1.3 GLX–2002) on public roads of middle Hungary. The DC MEMS-type accelerometer
(Recovib® Tiny 15G, effective bandwidth 250 Hz) recorded the vertical vibration at
a sampling frequency of 1024 Hz, having different locations: in the coin toss behind
the handbrake (x1), on the cockpit righthand-side (x2) and on a chassis element of the
trunk righthand-side (x3). Traveled distances covered respectively 50.7, 31.1, 29.2 km.
High-pass filtering of xn with a cut-off frequency at 1 Hz is applied as pre-processing
to eliminate the substantial DC contribution. The down-sampling by a factor of four
followed, further easing the computations.

The method is collocated by two columns (I,II) with steps (1,2,. . . ), as illustrated in
Fig. 6.1. The Column I. establishes the categorization system to store RVV segments
found by CpD. Column II. produces spectrally non-stationary random vibration signals.
The current procedure is presented in two runs: the 1st run consisting simulations
yu for u = 1, 2, 3 from the first measured RVV, x1; and the 2nd run comprises the
y4 simulation from xn, n = 1, 2, 3 measurements. Indeed, it would be sufficient to
present a few simulations from multiple RVV series for presentation purposes, but field
recordings are typically not widespread; thus, analysts having one measurement can
also investigate the method’s capability.

6.3.1 Column I. Establishment of a database

Step I.1. Let xni denote the measured signal corresponding to in = 1, 2, . . . , Tn uni-
formly sampled instances of the n = 1, 2, . . . , N measured RVV.

Step I.2. The short-time Fourier transform Xn computed here uses one-second-long
windows without overlapping, resulting in one Hz resolution.

Step I.3. The first four spectral moments of Xn, respectively µ(n)
m for m = 1, 2, 3, 4 are

subjected to a CUSUM-type CpD, consisting of the following sub-steps.

Step I.3.a. Let Xnjk denote the DFT profile corresponding to k frequency bins of
the j-th second from the n-th measurement. For conciseness in Eq. 1–4, also let us
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Figure 6.1: Process flowchart of Probability-based Spectrogram Synthesis (PBSS). Only
sub-indices are highlighted in the current caption, such as n-th measurement, s-th
segment, i-th time instance, j-th second, k-th frequency bin, and u-th simulation.
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overlook n, j indices, such as Xk = Xnjk and µ
(n)
mk = µmk. The spectral centroid,

µ1,k =
∑K

k=1 fkXk∑K
k=1 Xk

(6.1)

is the frequency-weighted sum of Xn normalized by the unweighted sum, where fk is
the k-th frequency bin in Hz for the corresponding DFT vector X [77]. The spectral
spread,

µ2,k =

√√√√∑K
k=1(fk − µ1,k)2Xk∑K

k=1 Xk

(6.2)

is defined as the standard deviation around the spectral centroid, which stands for the
spectrum’s instantaneous bandwidth [77]. The spectral skewness,

µ3,k =
∑K

k=1(fk − µ1,k)3Xk

µ3
2,k

∑K
k=1 Xk

(6.3)

describes symmetry around the centroid. The spectral kurtosis,

µ4,k =
∑K

k=1(fk − µ1,k)4Xk

µ4
2,k

∑K
k=1 Xk

(6.4)

indicates peakiness and the non-Gaussian nature.

Step I.3.b. The four spectral moments are subjected to the CUSUM-type CpD. The
CUSUM abbreviation corresponds to the cumulated sum of the differences between the
vector elements and the vector’s mean, Sj = ∑J

j=1(µj − µj). An extremum Ŝ serves as a
test statistic, on the other hand, it points to a candidate changepoint at the j-th second
showing a sudden change in S. The following sub-step decides upon the significance of
a candidate changepoint.

Step I.3.c. From available resampling methods [79], a permutation approach is imple-
mented here. Let Rr denote the r-th random rearrangement (without replacement)
of elements in S. Each time, R̂ > Ŝ, the significance of the candidate changepoint
decreases. Let the p-value be approximated by

p̃ =
Num

[
R̂|R̂ > Ŝ

]
R

, (6.5)

with Num [·] denoting the number of elements. Each reference set consists of r =
1, 2, . . . , 104 permutations beneath and an α = 0.05 significance level is applied. If
p̃ < α, the candidate changepoint is considered significant.
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Step I.3.d. The four series of CPs corresponding to m = 1, 2, 3, 4 are considered
global dissections in a spectrogram Xns and conversely, in the time domain, xns.

Step I.4. Lengths and RMS of segments are stored in l and r, respectively.

Step I.5. STFT and corresponding spectral moment calculation, followed by change-
point detection are repeated on each measurement until no more time series need to be
analyzed.

Step I.6. The joint probability space L × R, for l ∈ L, r ∈ R is discretized into
∆l × ∆r, referred to as the grid, G.

Step I.7. The probability density functions λ and ρ are obtained, respectively for
l and r, providing probability-based choices on what RMS content to simulate and how
long. The grid and PDFs from the 1st run are illustrated in Fig. 6.2.

Step I.8. The allocation of segments Xns to the cells of G is denoted as G [X],
Practically, each STFT segment can be labeled such as X[G]

ns , referred to as the database
interpreted on the grid.

In summary, the procedure’s I. column introduces a number of measurements to
changepoint detection. Changepoints provide borders of segments to measure the
segment’s length and -RMS. Labeling segments as per the corresponding location in
the discretized joint probability space constitutes the database of a run.

6.3.2 Column II. Vibration simulations

Random Gaussian vibrations are simulated per seconds in the randomly chosen segment.
Finally, segments are concatenated to a total simulation signal in TFD and TD.

Step II.1. The process begins with initializing loop counters for the s-th simulated
segment, containing j seconds in the u-th simulation.

Step II.2. One random realization pair {l′
s, r′

s} is drawn from λ × ρ corresponding
to one point in the grid. If the random coordinate pair arrives at a non-empty tile, the
nearest non-empty cell is looked for.

Step II.3. The nearest non-empty cell, g ∈ G, is found by the Euclidean distance
between cell centers. It is noted that a non-empty cell is closest to itself.
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Database from the 1
st

 run and probability density functions
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Figure 6.2: The 1st run database. Pane a) marginal probability density pd(l) with
corresponding histogram; pane b) marginal probability density pd(r); pane c) discretized
joint probability space of segment lengths l and RMS, r, where gray-scale squares indicate
joint probability densities overlayed by {l, r} scatter.

Table 6.1: Distributions fitted to DFT values. DFT values Xsjk in the s-th segment
per frequency bin k are fitted differently as of the segment length j.

j Fit

1 Direct replication, Y = X
2–9 Uniform distribution
10–19 Normal distribution
>19 One of the trial distributions*
* Trial distributions: normal, kernel, exponential,
gamma, half-normal, Rayleigh, and Weibull distributions.

Step II.4. One X ∈ g segment is chosen from the available ones, contributing to
a segment-to-model, X[g]

s = X
[g]
sjk.

Step II.5. Each frequency bin k of values in X
[g]
sjk are modeled through j seconds

according to Table 1. Unity-long segments are not modeled but directly replicated. The
j ∈ [2, . . . , 9] long segments are fitted by uniform distributions, such as

χsk : U
[
min

j
X

[g]
sjk, max

j
X

[g]
sjk

]
. (6.6)
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If j ∈ [10, . . . , 19], the modeling relies on normal distribution in the form of

χsk : N
[
meanjX

[g]
sjk, varjX

[g]
sjk

]
. (6.7)

For longer segment-to-model, j ≥ 20, a series of trial distributions are fitted: normal
(N), kernel (K), exponential (E), gamma (G), half-normal (Hn), Rayleigh (R), and
Weibull (W) models, which showed good capability in modeling. In each trial, a corre-
sponding random sample of the same length is drawn. The trial distribution, with the
smallest Kolmogorov–Smirnov distance to the data in X

[g]
sjk at fixed g, s, k, is considered

a representative distribution. Thus, χsk ∼ X
[g]
sjk probability density array is built up

bin by bin in the s-th segment.

Step II.6. In the s-th simulated segment, the DFT profile Ysj corresponding to
the j-th second is the random realization of χsk. A random variable is drawn from χsk

per frequency bin until a positive value is obtained to counteract negative coefficients
in the spectrum.

Step II.7. In the j-th second of the s-th segment, Ysj is coupled with a uniformly
distributed random phase, and inverse Fourier transformed to obtain a zero-mean
Gaussian vibration ysj.

Step II.8. The DFT simulation and vibration synthesis is repeated for all j. The
segment-in-simulation grows until the desired segment length j = l′

s is achieved. Each
j-th spectrum rests on the same array of probability densities, χsk.

Step II.9. The concatenation of j-th seconds in TD and TFD concludes the end
of one simulated segment, such as Ysj = {Ys,1 ≺ Ys,2 ≺ · · · ≺ Ys,J} and ysj =
{ys,1 ≺ ys,2 ≺ · · · ≺ ys,J} the symbol ≺ describing “followed by.”

Step II.10. Further segments are simulated by repeating Steps II.2–9., from a random
realization of {l′

s, r′
s} pair to the concatenation of seconds. New segments are constructed

until the sum of segment lengths arrives at supersedes the size of the measured signal,
T . The simulation length in the 2nd run is set to match to longest measurement.

Step II.11. The concatenation of segments, such as Y = {Y1 ≺ Y2 ≺ · · · ≺ YS}
andy = {y1 ≺ y2 ≺ · · · ≺ yS} concludes the end of the u-th simulation.

Step II.12. If more simulation is carried out, the method repeats Steps II.1–11. until the
necessary number of simulations, U , is obtained in the form of YU and yU , concluding
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the end of the current procedure.

Highlighting key steps of Column II., segments are simulated in the time-frequency
domain from second to second. A random length and RMS are chosen from the previ-
ously established database, as in Fig. 6.2, per segment. Each segment-to-simulate may
consist of several spectral profiles, which facilitate the modeling of each frequency bin
according to Table 6.1. The probability density array produces random variables in
each frequency bin with substantive consistency through time indices of a segment.

6.4 Results

This section introduces results from the two runs in separate subsections for un-
ambiguity.

6.4.1 Results from the 1st run

Fig. 6.3 shows how each simulation differs in the 1st run. The measured vibration
signal in pane a) x1 consists of transient events, and each simulation also mimics such
short events, nevertheless at varying instances in panes c,e,g). Distinctive TD behavior
implies distinguishable TFD characteristics. Seemingly, the simulated spectrograms
Y1, Y2, Y3 are neither darker nor whiter as X1. Further to be highlighted here, series
a) x1 incurred two examples of stopping the car at 350 and 2600 s providing STFT
sections dominated by constant harmonic excitation around 25 Hz in b) X1. Constant
harmonic excitation is also manifested in d) Y1 for short periods. Sections of a) X1

also introduce other accountable phenomena in the bandwidth 100–120 Hz at 1200 and
1770 s, best described as shocks. Similar high-frequency excitations are simulated in
h) Y3 around 1200, 1910, 2280 s. Interesting to note, that the 0–50 Hz bandwidth is
consistently darker compared to the upper halves in each STFT.

Further comparisons are explained by the Probability densities (pd) of TD- and
(FD) moments in Fig. 6.4. Let η(u∨n)

m denote the m = 1, 2, 3, 4-th TD moments over j

seconds of either n = 1 measurement or u = 1, 2, 3 simulations. The pd of first TD
moments, pd

(
η

(n=1)
1

)
, are not directly comparable to simulations in pane a). Since

distributions of pd
(
η

(u=1,2,3)
1

)
from simulations show only a rudimentary spike at zero.

While η
(n=1)
1 from the measurement is computed block wise in one-sec-long frames of

x1, its fluctuation is natural. However, the inverse DFT with a uniformly distributed
random phase from Step II.7. can only provide zero-mean Gaussian processes. In
pane b) pd(η2) supplies similarities in scale, location, and magnitude parameters of the
distributions in. Similarly, suitable matches are inferred from c) pd(η3). A degree of
similarity for d) pd(η4) is better viewed on log-horizontal scales, which holds further
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Time- and time-frequency domain representations from the 1
st

 run
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Figure 6.3: Measurements and simulation of the 1st run. The n = 1 measurement and
the resulting u = 1, 2, 3 simulations in the 1st run per row, the time domain signals in
the left column with corresponding short-time Fourier transform in the right column.

observations. Real-world RVV introduced kurtosis values orders of magnitudes higher
than the simulations.

By similar considerations regarding the four spectral moments in panes e–h), it can
be concluded that a general consistency is found in pd(µm) two-fold PDFs, directly
comparable in the probability domain.

6.4.2 Results from the 2nd run

The 2nd run in Fig. 6.5 shows that the collected measurements x1, x2, x3 in panes
a,c,e) obviously differ, while the simulated signal d) y4 also mutually differs. By visual
examination, it can be concluded also here that Y4 overall is neither whiter nor darker
compared to Xn. It can be observed in the measurements, e.g. pane f) X3, how sweeping
harmonic components can be obtained in reality. Such sweeping harmonics can be
better examined in the enlarged STFT, X3 in Fig. 8.2, suggesting speed-dependent,
drivetrain related causes. Simulations also presented harmonic components in Fig. 6.5.h)
but rather, the hopping of articulated harmonic features can be observed instead of
sweeping. In summary, a mutual difference between simulations and measurements can
be deduced.

Regarding the 2nd run, it can be concluded by similar reasoning in Fig. 6.6 that
probability densities for all but the first TD moments; furthermore, for all FD moments
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Probability density functions of 1
st

 run moments
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Figure 6.4: Two-fold probability density functions of moments in the 1st run. Comparison
of time and frequency domain moments from n = 1 (continuous) measurements above
and u = 1, 2, 3 (dashed, dash-dotted, dotted) simulations below, in the 1st run. Arrows
show extrema per series in each half for the 1–4th time domain moments per seconds in
panes a–d) respectively, and for the 1–4th frequency domain moments per seconds in
panes e–h) respectively. The legend refers to the source signals.
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represent a good match between measurements n = 1, 2, 3 and the simulation u = 4 in
terms of the location, scale, and magnitude parameters of its distributions. Instead, the
current paragraph highlights the algorithm’s inherent mechanics in the case of multiple
measurements. The distinctive characteristics of the third measurement X3 is helpful
for presentation, in which case the gauge was installed directly on a chassis element
of the trunk, yielding exacerbated harmonic components at app. 75 Hz in 800–1200
s. Also, certain road sections of the trip produced more noise, e.g., after 1500 s in
Fig. 6.5.f). Thus, well observable median differences of probability densities pd

(
η

(n)
2

)
and pd

(
µ

(n)
2

)
are obtained among the experiments. Its simulated counterparts for

pd
(
η

(u)
2

)
and pd

(
µ

(u)
2

)
highlight how the procedure indeed utilized pooled samples

of the three measurements, e.g., in e) pd
(
µ

(u)
1

)
has a longer tail to the left (toward

smaller bins), or f) pd
(
µ

(u)
2

)
has a thicker tail to the right, and g) pd

(
µ

(u)
3

)
reaches to

the right, as well as h) pd
(
µ

(u)
4

)
has thicker downhill on the left side.

Diverse phenomena can be found in real RVV, as in the case of X3 in Fig. 8.2.
Similarly, simulations show various manifestations, highlighted on Y4 in Fig. 8.3.
While the corresponding captions provide further details, here, general conclusions are
summarized. The real RVV X3 shows constant harmonic excitation with harmonics and
the similarly the simulation Y4, see annotations a). Higher frequency excitations can be
found around 75 Hz, see arrows b). While X3 shows smooth frequency modulation, it
cannot be expected in the simulations due to random sampling. X3 provides broadband
excitation for prolonged periods, similarly Y4, see points c).

6.4.3 Verification

The approach is verified according to the scheme presented in Fig. 6.9. The ln and rn in
Step I.4. are readily available. Introducing the simulated signals Yu to the same CpD
the segment length and -RMS distributions l′′

u and r′′
u from the simulations are directly

comparable. Fig. 6.10 reports the comparisons below the average DFT profiles. From
the 1st run, the time-averages of X1 and Yu for u = 1, 2, 3 profiles show close-to-identical
similarities; similarly the segment length and -RMS probability density functions in
panes b,c). By the 2nd run in panes d,e,f) slightly different spectral characteristics can
be observed between measurements, whereas Y4 is positioned somewhere in-between
X1, 2, 3, as expected. The probability density of segment lengths remains close to
identical. The segment RMS PDF provides a good confirmation of pooled sampling in
case of multiple measurements.
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Time- and time-frequency domain representations from the 2
nd

 run
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Figure 6.5: Measurements and simulation of the 2nd run. The n = 1, 2, 3 measurements
and the resulting u = 4 simulation in the 2nd run per row, the time domain signals in
the left column with corresponding short-time Fourier transform in the right column.

6.4.4 Non-Gaussian and non-stationary nature

RVV processes are well-known to undergo a non-Gaussian nature, having transients
being much further away from ±3σ limits and a leptokurtic state. Therefore, the
measurements and simulations are tested against the null hypothesis that “the series has
a Gaussian distribution.” The p-value from the Anderson–Darling tests (p), accompanied
by the kurtosis values (η4), are reported in Table 6.2. The current study also presented
evidence against the non-Gaussian nature of RVV from passenger cars in all cases.

The non-stationary nature is further investigated in the measurements and sim-
ulations. Non-stationarity can be analyzed in time-, frequency-, and time-frequency
domain features, e.g., by spectral entropy, H. For the power spectrum Sjk = |Xjk|2

with the marginal power spectrum Sk = ∑J
j=1 Sjk, the normalized power spectrum Pk

becomes
Pk =

∑J
j=1 Sjk∑K

k=1
∑J

j=1 Sjk

, (6.8)

from which the spectral entropy is

H = −
K∑

k=1
Pk log2 Pk, (6.9)
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Probability density functions of 2
nd

 run moments
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Figure 6.6: Two-fold probability density functions of moments in the 2nd run. Compari-
son of time and frequency domain moments of n = 1, 2, 3 (dotted, dashed, dash-dotted)
measurements above and u = 1 (continuous) simulation below, in the 2nd run. Arrows
show extrema per series in each half for the 1–4th time domain moments per seconds in
panes a–d) respectively, and for the 1–4th frequency domain moments per seconds in
panes e–h) respectively. The legend refers to the source signals.

Table 6.2: Statistics on non-Gaussianity and non-stationarity. Anderson–Darling tests
(p-value), kurtosis (η4), normalized spectral entropy (h), instantaneous normalized
spectral entropy (hj) and frequency-bound normalized spectral entropy (hk) statistics
of measurements and simulations.

1st run x1 y1 y2 y3

p 0.00 0.00 0.00 0.00
η4 7.57 4.18 3.82 4.07
h 0.89 0.89 0.89 0.89
hj 0.76 ± 0.09 0.76 ± 0.07 0.76 ± 0.07 0.76 ± 0.08
hk 0.88 ± 0.04 0.90 ± 0.04 0.90 ± 0.04 0.89 ± 0.06
2nd run x1 x2 x3 y4

p 0.00 0.00 0.00 0.00
η4 7.57 7.32 10.73 6.53
h 0.89 0.88 0.83 0.86
hj 0.76 ± 0.09 0.75 ± 0.10 0.72 ± 0.11 0.74 ± 0.10
hk 0.88 ± 0.04 0.88 ± 0.04 0.87 ± 0.03 0.87 ± 0.04
p is less than the smallest tabulated value, returning 0.0005.
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Artifacts on the 3
rd

 measurement
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Figure 6.7: Artifacts on the short-time Fourier transform of the 3rd measurement. The
gray-scale surface is overlayed by segment borders (dashed line) in the upper pane.
Various effects can be seen in the spectrogram, such as a) constant harmonic excitation
and its harmonics, possible one sub-harmonic; b) drifting harmonic excitation; c) broad-
band excitation for a prolonged period dominated by frequency range app. [1, 50] Hz
between [1220, 1320] s.
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Artifacts on the 4
th

 simulation
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Figure 6.8: Artifacts on the short-time Fourier transform of the 4th simulation. In the
upper pane: a) simulated stop, i.e., constant harmonic excitation with harmonics, b)
harmonic component with possible sub-harmonincs blended in background noise, c)
broad-band noise.

Figure 6.9: Verification process. Each run produced Yu simulations from xn measure-
ments. Simulated STFT profiles are subjected to Changepoint detection. The resulting
DFT profiles, PDF of segment lengths, and PDF of segment RMS are compared to the
ones from measurements, being on view in Fig. 6.10 per run.
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Verifications by average DFTs and probability densities of segment length, and -RMS from the two runs
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Figure 6.10: Comparison of N measurements and U simulations. On the left side, pane
a) average DFT profiles, b) PDFs of segment length, and c) PDFs of segment RMS in
case of the 1st run. On the right side, pane d) DFT, e) λ, and f) ρ distributions from
the 2nd run. Note, that legends show the origin STFT matrices for conciseness. The
legend refers to the source signals.
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Time- and frequency domain entropies of the 1
st

 run
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Figure 6.11: Spectral entropies of the 1st run. Instantaneous normalized spectral
entropies (hj) for n = 1 measurement and u = 1, 2, 3 simulations in the left column,
frequency-bound normalized entropies (hk) in a similar fashion in the right column.

and the normalized spectral entropy is

h = H

log2 K
, (6.10)

the denominator describing the spectral entropy of a white noise process, following
uniform distribution in the frequency domain. Since Xjk is available, the entropies
might be also investigated as a function of time and frequency. In the former case, hj

denotes the instantaneous normalized spectral entropy in the j-th second as follows

Pjk = Sjk∑K
k=1 Sjk

, (6.11)

Hj = −
K∑

k=1
Pjk log2 Pjk, (6.12)

hj = Hj

log2 K
. (6.13)

Similarly, as a function of frequency, the summations in Eq. 11–12 happen by time-index
j in a fixed bin k, resulting in a frequency-bound Hk, which normalized by log2 J yields
hk. Fig. 6.11, 6.12 show that the normalized entropies provide similar variations between
measurements and simulations, also quantified in Table 2.
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Figure 6.12: Spectral entropies of the 2nd run. Instantaneous normalized spectral
entropies (hj) for n = 1, 2, 3 measurements and u = 4 simulation in the left column,
frequency-bound normalized entropies (hk) in a similar fashion in the right column.

6.5 Discussion

The current study suggests that the long-criticized approach of time-history replication
still has remarkable benefits but by a different approach. A practical alternative is
presented above, emphasizing probability-based choices, hence the name Probability-
based spectrogram synthesis (PBSS).

Anomaly in the long-term had not been found in Fig. 6.10. The verification confirms
the approach of probability-based choices on segment length and RMS, supplying a
reasonable approximation of real-world RVV. Furthermore, the consistency between
average DFT profiles in panes a,d) supports the second form of probability-based
modeling by terms of Table 1. These findings show that PBSS may beneficially
synthesize broad-band excitations with shocks and solid harmonic components.

6.5.1 Deductive arguments

As expected, the first-order TD moments are characteristically misaligned in Fig. 6.4.a)
and Fig. 6.6.a). Instead of echoing Step II.7., it suffices to say that no other distribution
could have been obtained by simulation. Since the concerned 2–4 TD moments showed
proper matches in each half of the two-fold PDFs and the investigated FD moments are
adequately mirrored, it is deduced that PBSS can provide sufficient representation in
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the probability domain, though, excessive peaks are not typical.
Since TD variance is not constant, as Fig. 6.4.b) and Fig. 6.6.b) lower panes illustrate,

it is concluded that a variance, conventionally σ-modulated, random vibration signals
can be obtained, contributing to non-stationarity. The Fig. 6.13 further confirms this
by y3 with its TD moments and Y3 with FD moments along time, presenting the
variability in the second TD moment series.

6.5.2 Arguments on limitations

Transient events occur in simulated signals, but moderated peak levels can be still
achieved. The underlying reason can be best understood by the initially set time
resolution of STFT, presented by one-sec. frames here. Thus, applications mainly
concerned about excessive shocks may further tune parameters. It is speculated that
TD manipulations, e.g., ZMNL [129] may increase peak levels in simulated shocks.
Another suggestion is the direct replay of shocks, although beforehand, either manual
or an automated but rigorous shock extraction should be conducted.

A good agreement of strong harmonic components has been achieved between
measurements and simulations. Although the peak frequency components are smeared
in the simulated STFT, see Fig. 8.2.b) and Fig. 8.3.b). The frequency-modulation
in X3 is easily understood by human recognition, that smoothness in simulations is
only possible in a distinct manner due to spectrograms being segmented at each CP
through the whole bandwidth. In surplus, the random variables of segment length are
independent, thus, they are primarily dispersed in time.

The current section concludes that the above limitations can be well-understood
by traditional trade-offs in signal processing and statistical modeling. However, a
typical dilemma is left for here: certain disciplines, such as PVT, are often interested
in analyzing hour-long time series. Then the signal processing needs to balance the
computational efficiency and a good resolution. While STFT under-performs, e.g.,
Stockwell transform, or Continuous wavelet transform in terms of a fine resolution,
the latter two exemplary methods applied on current signals ran out of memory under
everyday circumstances (16 GB RAM).

6.5.3 Arguments on modeling

Further comparisons are extended to the modeling of segment length, ls = ln ∪ l′′
u , and

RMS distributions, rs = rn ∪ r′′
u , illustrated on Fig. 6.14. The probability distribution

of segment lengths, “s”, had been modeled by

p(s) = C/ sinh (ks) (6.14)
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Figure 6.13: Time- and frequency domain moments from the 3rd simulation. Pane a)
simulated signal in time domain, and its 1–4th time domain moments per seconds, in
b–e) respectively. Pane f) short-time Fourier transform of the simulation, and its 1–4th

frequency domain moments per seconds, in g–j) respectively.
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hyperbolic function, and empirically found constants of C ≈ 4 and k ≈ 1/4 had been
used [132, Eq.15]. In this paragraph substituting the notations s → ls, the C ≈ 8.9
and k ≈ 0.03 values are found by least squares fitting. This might suggest that the
distribution of spectrally homogeneous segment lengths might differ from amplitude-
type non-stationarities; or itself the subject of experiments, namely passenger cars,
contribute to different distribution than obtained from trucks in [132]. Despite the
difference, the proposed model can be successfully deployed for typical segment length
distributions since it excels in contrast to the exponential distribution in higher regions,
where the exponential distribution does not account for longer segments.

The modeling of probability density of segment RMS, rs, introduced further chal-
lenges in the literature. The modified four-parameter Weibull distribution (4W), such
as

P (x) =
0 , ∀x ∈ ]−∞, x0[

β
αΓ[γ/β]

(
x−x0

α

)γ−1
· e−(x−x0

α )β

, ∀x ∈ [x0, +∞[
(6.15)

proposed in [138, Eq.9] showed to be a better modeling, compared to a three-parameter
Weibull distribution (3W). Fig. 6.14.b) shows that the 3W method can under-represent
the PDF of r, while the 4W model provides a better approximation but under-represented
tail-distributions.

Speculatively, if the amplitude- and frequency-type non-stationarities lead to different
distributions of segment lengths, it implies on the long-terms that the joint probability
space of segment lengths provides more adequate representation; consequently, the RMS
distributions would be again indirect results.

6.5.4 General arguments

The literature of PVT distinguished amplitude- and frequency type non-stationarities in
RVV and studied vibration level variations, transient events, and harmonic excitation,
which distinctions allowed a better understanding of the constituents. The current
chapter presented a unified approach to the simultaneously occurring amplitude- and
frequency modulation in RVV.

Use cases may emanate from 1) the analyst has a limited number of measurements
and wishes to conduct many different simulations, or 2) already an ensemble of RVV
series is on hand and simulations shall be obtained as a general approximation of RVV
but in a respective manner. Also, if 3) experiments had been conducted by varying the
gauge’s location and a pooled sampling is applicable.

Generality rises from simulations being different in each loop of (j, s, u), and the
respective manner is laid down in the data-driven approach of DFT synthesis. Also, the
analyst is advised to investigate the applicability of a given test signal in the necessary
domains before commanding any equipment to reproduce it.
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Figure 6.14: Modeling of segment length and -RMS distributions. Pane a) shows
segment length probabilities of ln from measurements and l′′

u from simulations, together
as ls = ln ∪ l′′

u . The scatter shows the probabilities on common binning, dash-dotted
line corresponds to [132, Eq.15], continuous line represents current fit, and dashed
line corresponds to the exponential model. Pane b) shows segment RMS probability
densities of rn from measurements and r′′

u from simulations, together as rs = rn ∪r′′
u. The

scatter shows the probability densities individually for each sub-series of rs, histogram
corresponds to the probability density from the concatenated series of rs, dashed
line represents the three-parameter Weibull model based on concatenated series, and
continuous line corresponds to the four-parameter Weibull model [138, Eq.9] based on
the scatter.

6.5.5 Conclusion

The current chapter introduced the non-stationary simulation method, Probability-
based Spectrogram Synthesis (PBSS). Timely appearance and various manifestations
of most accountable artifacts in simulated spectrograms are likely to be met. An
arbitrary number of distinctive simulations can be obtained from unlimited measure-
ments. The simulation uses pooled sampling in the case of multiple measured series.
Probability densities of the 2–4th time domain moments and the 1–4th frequency domain
moments present noteworthy alignment between measurements and simulations. The
1st time domain moment of simulations is not an applicable metric here. Frequency
modulation is principally possible but not necessarily through consecutive spectrums.
Amplitude modulation is manifested as σ-modulation. Natural transients shorter than
the time-resolution of the STFT loose energy concentration in simulation. Harmonics
can be smeared around peaks in a spectrogram. Future research may investigate the
possibilities of increasing the kurtosis of simulated transients. Modeling possibilities by
joint distribution of frequency domain moments should follow.

Thesis 5. A simulation routine can be constructed that can reflect spectral varia-
tions in the time-frequency domain in a realistic manner; which simulates an arbitrary
number of different time-frequency domains from a single measurement realization; fur-
thermore, which simulates aggregate statistical properties of the registered road vehicle
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vibrations. Verifying this claim, I have presented the Probability-based Spectrogram
Synthesis procedure for simulating the 2nd, 3rd, and 4th spectral moments. Practical
implications of the thesis are:

5.1 Changepoints in the time-frequency domain can found simultaneously for transient
events, changes in the root mean square of the signal, and the appearance of
harmonic excitations in the road vehicle vibration signals.

5.2 Methods relying on magnitude modulation bypass the need for a priori and
heuristic adjustment of many parameters.

5.3 Road vehicle vibrations can be directly simulated in the time-frequency domain.

5.4 Modeling and simulation based on measured data outperforms in variability the
time-history replication method. ■ Ref.: [10]
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Chapter 7

Clustering spectrums

Research on the non-stationary nature of Road vehicle vibrations (RVV) led to advances
in simulating such processes. Contemporary methods introduced for the analysis of
RVV primarily aimed at partitioning the signal in the time- or time-frequency domain,
providing differing segments of a signal. However, a degree of dissimilarity, or conversely
similarity, is still challenging to find. Hereunder it is argued that in some cases, merely
a statement of dissimilarity between neighboring segments within a signal might be well-
enough, though from a broader perspective, the assessment of the similarity of Discrete
Fourier transforms (DFT) may be the next practical step forward. For this reason,
the current chapter presents the hierarchical clustering of elements of the Short-time
Fourier transform (STFT) plane from an RVV measurement; secondly, it introduces a
clustering validation metric to arrive at an optimum distance metric and a threshold to
use in binary hierarchical clusters.

7.1 Introduction

Let us suppose that an STFT is appropriately segmented, each segment consisting of
one or more DFT profiles. Let us further assume that the segments are characterized
by one representative profile, e.g., the average DFT profile of that segment. We wish to
investigate the similarities of representative DFT spectra of segments. Therefore, the
current article provides a methodology for measuring DFT vector similarity from the
STFT of RVV. Instead of figuring out completely artificial examples of representative
DFT profiles, a recording in Fig. 7.1.a) is provided, serving as a population; apparently,
its elements are ordered in time. The so-called representative samples are drawn
randomly from the population.

The field of clustering is maturing with a wealth of procedures and algorithms.
Several approaches and their different taxonomies are available. A comprehensive review
of methods would escape the possibilities of the current section. However, a common
taxonomy is discussed in [139], defining hierarchical and partitional clustering families

117
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at the first grouping level. Hierarchical clustering techniques provide a hierarchical
sequence of divisions according to a similarity-based criterion for merging or dividing
clusters. Partitional clustering approaches identify the partition that optimizes a
clustering criterion. While hierarchical techniques create a nested series of partitions,
partitional clustering simply creates one.

Other introductions may distinguish first the families of hard- and soft clustering.
In hard clustering, an object can belong only to one cluster; in soft (or fuzzy) clustering,
objects can belong to more than one cluster. In the latter case, a fuzzy clustering may
be transformed into a hard clustering by allocating each pattern to the cluster with the
highest membership. Standard techniques for hard clustering are hierarchical clustering
and k-means; and Gaussian mixture models or fuzzy C-means for soft clustering.

The primary benefit of hierarchical clustering methods is that the number of clusters
does not have to be specified a priori. Dendrograms provide appealing representations
assisting the clustering; however, they also introduce the typical dilemma of defining a
threshold of distances by which cluster boundaries can be determined. The first and
most subjective solution to this question is a visual examination, followed by a subjective
decision. While this might not provide a proving ground, the visual assessment is more
or less unavoidable in clustering, which can be assisted by other qualitative figures, e.g.,
silhouette plots [140]. Thus, one might classify subjective decisions as manual evaluation.
Researchers also introduced dozens of metrics to validate clustering results by boiling
down the problem to single metrics. The external evaluation covers the comparison
of the given results to ground truth, if available. Some of the often-favored internal
evaluation metrics follow here [141]. The Variance ratio criterion [142] balances the
within-cluster variation against the between-cluster variation in Euclidean spaces. The
Dunn family of indices [143] formalizes the idea of a ratio between the between-cluster
separation and within-cluster compactness for general dissimilarity data. The Average
silhouette width criterion [144] is a trade-off concerning the between-cluster separation
and the within-cluster homogeneity. The CDbw-index [145] assesses the separation and
compactness of clusters. The Clustering validation index based on nearest neighbors
[146] proposed an alternative idea to measure separation, which does not excavate
dissimilarity values; instead, it is based on how many of the k-nearest neighbors of each
observation are in the same cluster. The reader is referred to [147] for a more extensive
list of validation metrics.

Here, a hypothesis is projected. Once a generally accepted segmentation technique
is adopted, it is speculated that the similarity of DFT or Power spectral density (PSD)
profiles from segments, needs to be analyzed. While the future is unknown, it remains
a potent guess that clustering methods offer prominent techniques in this question.

The process introduced here is based on the idea of defining a threshold, which
maximizes the number of clustered spectrums beneath an overall low spread. Although
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Figure 7.1: Sample DFT vectors are randomly selected from the same population in
a) denoted by “×” at f1 = 1; f101 = 101 Hz. Pane b) shows the selected vectors in the
frequency domain.

one of the above validity indices could have been adopted; instead, the present technique
gives a straightforward and more tactile measure.

7.2 Methods

The technique is shown first on a random sample from the STFT of an RVV measurement
to illustrate the clustering process, yielding an optimum distance metric beneath
an optimum parameter setting. Then, the application is repeated many times for
a probabilistic appraisal of arriving at such optima. Section 7.2.1 introduces the
establishment of DFT vectors to be clustered. A broad introduction to dendrograms
follows it, and various distance metrics are discussed Sec. 7.2.2. Next, the distributions
of distances by various metrics are illustrated Sec. 7.2.3; afterwards, the optimality
criterion follows in Sec. 7.2.4.

7.2.1 Source data

A DC MEMS accelerometer measured the vertical acceleration of a passenger car with a
sampling frequency of 1024 Hz, placed in the coin toss behind the handbrake of a Suzuki
Swift Sedan 1.3 GLX (2002). The journey took place in everyday traffic conditions. The
obtained series is high-pass filtered with a 1 Hz cut-frequency; however, the spectrogram
is accounted only up to 100 Hz, as let through an ideal low-pass filter, in order to reduce
computational needs. The resulting STFT matrix without overlapping of one-sec-long
timeframes is plotted in Fig. 7.1.a). Twenty-five timepoints, tk, are randomly selected
from the STFT matrix, yielding the first sample.

7.2.2 On the use of dendrograms

A brief introduction to dendrograms follows, whereby the frequent notations are illus-
trated in Fig. 7.2. The objects may have one or more dimensions, e.g., single points on
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Figure 7.2: A dendrogram showing five leaves combined into two multi-element clusters,
Ck, and one lone branch, Lk, at the utilized cutting height, cD. The number of leaves in
the k-th multi-element cluster is nk, the number of multi-element clusters is NC , while
the number of clustered objects is NΣ.

an axis, coordinate pairs in a plane, coordinates in a three-dimensional space, etc. Here,
each x itself is a DFT vector from the STFT plane. Let us imagine a tree upside down
as in Fig. 7.2. The tree (a dendrogram) is built up from branches, each one ending in
one leaf or object. Currently, the k-th DFT vector xk = ak,f is the k-th leaf comprising
f = 1, 2, . . . , F frequency bins. Here, defining a cutting height at cD (viz. a threshold
for distance), some branches fall, yielding clusters with multiple leaves as collectives,
Ck, and a lone branch holding only one leaf, Lk. (Singleton is the common term for
a stand-alone leaf, but the notion s is spared for source later.) The number of leaves
in the k-th multi-element cluster is denoted by nk, and the number of multi-element
clusters is NC , while the number of clustered objects is represented by NΣ .

As the first step, one aims to find the similarity between the pair of objects given
a distance measure [148, pp.3925–3926], called here metrics. Common similarity
metrics are Euclidean-, standardized Euclidean-, Chebyshev-, cosine-, correlation-,
and Spearman distances, respectively Mm = {EUC, SEU, CHE, COS, COR, SPE} as of
Eq. 7.1–7.6.

For xs source- and xt target objects in general, each representing a row vector, the
Euclidean distance is

d2
s,t = (xs − xt)(xs − xt)′ (7.1)

the square root of the scalar product of the difference vector (xs −xt). The standardized
form of the Euclidean distance is

d2
s,t = (xs − xt)V−1(xs − xt)′ (7.2)

where V is the n × n diagonal matrix whose j-th diagonal element is S2
j . The term S
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is a vector of scaling factors for each dimension. The Chebyshev distance,

ds,t = max
j

{
|xsj

− xtj
|
}

(7.3)

expresses the maximum of absolute of difference vector between source and target
objects. The cosine distance,

ds,t = 1 − xsx′
t√

(xsx′
s) (xtx′

t)
(7.4)

is one minus the cosine of included angle between points (treated as vectors). Correlation
distance is defined as

ds,t = 1 − (xs − xs)(xt − xt)′√
(xs − xs)(xs − xs)′

√
(xt − xt)(xt − xt)′

(7.5)

which is one minus the sample correlation between objects, where xs = (1/n) ∑
j xsj

and xt = (1/n) ∑
j xtj

. At last, the Spearman distance,

ds,t = 1 − (rs − rs)(rt − rt)′√
(rs − rs)(rs − rs)′

√
(rt − rt)(rt − rt)′

(7.6)

which is one minus the sample Spearman rank correlation between observations (treated
as sequences of values), where rsi

is the rank of xsi
taken over x1i

, x2i
, . . . , xmi

; rs

and rt are the coordinate-wise rank vectors of xs and xt, i.e., rs = (rs1 , rs2 , ..., rsn);
furthermore, rs = (1/n) ∑

j rsj
= (n + 1)/2 and rt = (1/n) ∑

j rtj
= (n + 1)/2.

The second phase is the clustering of objects into a binary, hierarchical cluster tree.
Objects that are in proximity are linked. As objects are linked into binary (two-object)
clusters, the newly generated clusters are grouped into larger clusters until a hierarchical
tree is constructed. Different methods can be used for calculating linkages [148, pp.3087–
3088]. Single linkage, also known as nearest neighbor, uses the shortest distance between
objects in the two clusters. The maximum distance between objects in the two clusters
is used in complete linkage, in other terms, the farthest neighbor. Average linkage uses
the average distance between all pairs of objects in any two clusters. The Euclidean
distance between the centroids of the two clusters is used in centroid linkage, while the
Euclidean distance between the weighted centroids of the two clusters is used in median
linkage. Further options are, e.g., Ward’s linkage and Weighted average linkage.

The average linkage Eq. 7.7 method is used in the current chapter, which can be
expressed for S source- and T target clusters as:

Ds,t = 1
nSnT

nS∑
i=1

nT∑
j=1

d(xSi
, xTj

) (7.7)
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where xSi
is the i-th object in the source cluster, S, having a total number of included

objects nS; similarly, xTj
is the j-th object in the target cluster T with nT included

objects. Note how any metrics from the first step Eq. 7.1–7.6 can be used in the operator
d(·, ·). At each stage of hierarchical clustering, the clusters S and T , for which DS,T is
the minimum, are combined.

In summary, given the objects, xk , the pair-wise differences, d, are calculated by
metrics Eq. 7.1–7.6, and the average linkage method Eq. 7.7 yielding D constitutes the
clustering. In the followings, an optimal threshold for D is sought.

The following notations are worth to highlight here. Let P := {cp} the set of cp,
since C is reserved for collectives. Thus, M ×P parameter space describes the M metric
types and P set of various thresholds, cp.

7.2.3 The distribution of distances

Given a cD threshold as in Fig. 7.2, the clustering is complete, i.e., a cluster identification
number is ordered to each sample DFT profile. The empirical cumulative distribution
functions of distances p(D) are obtained in each metric type, as in Fig. 7.3. The
panes show that kernel cumulative distribution functions are close to the empirical
distributions. The cut-off values for probabilities cp = {k · 0.10}} for k = 1, 2, . . . , 9 are
available in the ECDF values vertically, from which the cD cut-offs for distances can be
obtained on the horizontal axis. Whenever p(D) ̸= cp, inverse linear interpolation helps
to obtain cD.

7.2.4 A benefit-to-cost ratio

There are many proposed methodology for defining a threshold on dendrograms; nev-
ertheless, the lack of a golden rule does not ease the circumstances. However, it is
hypothesized that the following are often aimed at (a) as many clustered elements as
possible, beneath (b) as low spread within clusters as possible.

To characterize the variability within collectives, Ck, among its elements, xi, over
the frequency domain, f , the following measure is used:

vk =
nk∑
i=1

√√√√√ F∑
f=1

(xi,f , xi,f )2, (7.8)

xi,f being the average DFT profile in the i-th cluster. Thus, the square root of the
squared deviations between cluster elements x and cluster mean x is summed into one
number vk in the k-th collective cluster. However, it might be favorable to represent this
error from many clusters in a single measure characterizing an {m, p} setting. Therefore,
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Distributions of links by different metrics
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Figure 7.3: Empirical probability mass function (EPMF) along with Kernel-PMF and
Kernel cumulative distribution function (KCDF) shows that the ECDF (later referred
to as p(D)) and the theoretical KCDF are in close proximity for distances obtained
by metrics: a) Euclidean-; b) standardized Euclidean-; c) Chebyshev-; d) cosine-; e)
correlation- and f) Spearman distances. Note that the Kernel distributions do not
utilize positive support.

the center of mass for one setting is defined as

Gm,p =
∑NC(m,p)

k=1 v(m,p)k
n(m,p)k∑NC(m,p)

k=1 v(m,p)k

, (7.9)

in short Gk = ∑ vknk/
∑ vk. A possible representation of a benefit-to-cost ratio ap-

proach is implemented, such as the more objects are clustered, the more benefits are
provided as of condition (a), and the higher error term is provided by an {m, p} setting,
the higher costs are to be paid in line with condition (b); together defined such as:

Rm,p = NΣm,p

Gm,p

(7.10)

equivalently R = N/G, shown in Fig 7.4.d), which offers the optimum at its maximum
in the M × P parameter space of clustering.

The following section presents the clustering of the above given random sample and
Section 7.4 investigates the approach by repeating the procedure 100 times per different
sample size.



124 CHAPTER 7. CLUSTERING SPECTRUMS

Various statistics on the M×P parameter space

S
P

E
0.8

C
O

R

2

0.6

C
O

S

Metric [-]

c
p
 [-]

C
H

E 0.4

N
C

 [
-]

S
E

U 0.2

4

E
U

C

6
a)

S
P

E

0.8

C
O

R

0.6

C
O

S

c
p
 [-]

Metric [-]

10

C
H

E 0.4

N
 [

-]

S
E

U 0.2

E
U

C

20
b)

S
P

E

0.8

C
O

R

0.6

C
O

S

Metric [-]

c
p
 [-]

10

C
H

E 0.4

G
 [

-]

S
E

U 0.2

E
U

C
20

c)

S
P

E

0.8

C
O

R

2

0.6

C
O

S

c
p
 [-]

Metric [-]

C
H

E 0.4

R
 [

-]

S
E

U 0.2

4

E
U

C

d)

Figure 7.4: Evaluations in the M × P parameter space, where M indicates metrics and
P denotes the set of {cp} thresholds. Results from {m, p} settings: a) the number of
collectives, N ; b) the number of clustered objects, NΣm,p ; c) the center of mass, G; and
d) benefit-to-cost ratio, R.

7.3 Results

Fig. 7.4 presents the outcomes from clustering setups collocated by the distance metrics,
m, and cut-off probabilities, cp, for 25 randomly selected vectors from Fig. 7.1. Beginning
by Fig. 7.4.a), it shows that the number of clusters at low and high cp settings is likely
to be minor, while middle regions of cp are likely to produce a maximum in NC . This is
expected since a low cD might cut all leaves, yielding only a few multi-element clusters.
Conversely, a high cD might also surpass the largest distance in a dendrogram, generating
one group comprising every branch. Pane b) supports the above observations since an
increase in cp, consequently in cD, yielded an increasing number of clustered objects
in NΣm,p regardless of the type of metric. Pane c) depicts a non-linear proportionality
between the center of mass G in clustering settings {m, p} as of cp ; however, it also
shows a promising dale in the middle regions, especially at the correlation and cosine
metrics leading to the suggestion in pane d). That is, benefiting from the number of
clustered objects NΣm,p but at the cost of within-cluster-variability, vk, the benefit-to-
cost ratio, R, expresses the optimum at its maxima, which in the above-given sample
lead to m∗ = COS at c∗

p = 0.40, which meant c∗
D = 0.24 here.

Fig. 7.5 shows the dendrogram of the first sample using m∗ and c∗
p yielding a

seemingly sensitive clustering as a function of cD since distances are dense around the
threshold c∗

D. Fig. 7.6 shows each cluster with its objects and the mean of objects
in the frequency domain, producing a qualitatively nice well-alignment in Ck, for
k = 3, 4, 6, 12, 14. The last cluster, C15, is seemingly more spread in-between. Finally,
Fig. 7.7 shows that the means from multi-element clusters tend to be separated from
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Figure 7.5: Dendrogram by cosine metric, where alteration of lighter and darker gray
colors shows different clusters, black denoting lone objects below cD optimal cut value
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singletons.

7.4 Replications

The procedure was repeated 100 times utilizing random samples of sizes SS = {25, 50,
75, 100}. The M × P parameter space had been evaluated in each random sample.
Fig. 7.8 left column depicts that an optimum metric based on BCM maxima is foremost
likely the be the cosine-, second-most the correlation distance metrics. It also shows in
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Figure 7.7: Sample clustering yielded a few lone leaves (gray), which are overlaid by
the mean of multi-element clusters (black)
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Figure 7.8: The optimum choice on the metric (left column) and corresponding swarm-
chart of optimum cut-off for probability (right column). Each row represents 100 trials,
according to SS sample sizes. Md denotes the cases where different simultaneous optima
had been found in a trial.

the right column that c∗
p is most often around 0.40–0.50, whereas c∗

D is not of particular
interest. The left column also reports cases where multiple optima, Mn, were found
in a trial. The benefit-to-cost ratio surfaces, R, tended to have typically one global
maximum, which eases the choice by current methodology.

7.5 Discussion

Hennig argues that “indices used for finding an optimal number of clusters by opti-
mization should not systematically prefer lower or higher numbers of clusters” [141].
However, considering the number of clustered objects, it is believed that the presented
approach should avoid such a conflict. Though the long-maintained interest in clustering
has led to “a possibly three-digit number of algorithms” [149], the current procedure can
be beneficial in the spectral clustering of DFT vectors obtained in RVV. Finally, it is
noted that the above investigation could be extended to different linkage methods, as
well.
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The idea of clustering can be imagined in a completely different use case. The
clustering may be applied to the whole series of DFT vectors, e.g., the STFT itself in
Fig. 7.1.a) given a choice of metric and either an omnibus threshold or a procedure to
arrive at optimum c∗

D. Now, if the series of leaves in a dendrogram (see upper horizontal
axis in Fig. 7.5) is constrained to the original appearance in time, the dendrogram
may not present an easily readable structure. However, apart from aesthetics, the
similarity of neighboring DFT vectors could be evaluated. In this idea, it might be
rightly supposed that some of the consecutive DFT vectors get into the same cluster,
while borders of consecutive clusters are also to be found. The consecutive leaves
being in the same cluster would yield a coherent segment in-between but different from
neighboring segments, which procedure would mean a novel segmentation.

It is argued in this chapter that the next advantageous step following the segmen-
tation of the time-frequency domain can be the quantification of similarity among
segments. The clustering of representative DFT vectors could be accompanied by the
collection of exogenous data in order to relate such a segmentation (via clustering). For
instance, road profile surveys, internal and external dash-cam recordings could be used
to identify the scenarios contributing to the clusters.

7.6 Conclusion

The current chapter presented a validation criterion for clustering road vehicle vibra-
tions spectrums in an automatable procedure. The choice of a threshold for distances,
cD, in a dendrogram has been investigated by thresholds on the empirical cumulative
distribution probabilities of distances, cp, allowing the unified treatment of distance
metrics. In hierarchical clustering, a benefit-to-cost ratio surface, Rm,p, can be defined
as a function of metric types, m and cut-offs, cp. The scheme was repeated in 100
replications as of the four random samples, consisting of {25, 50, 75, 100} elements. It
showed that the cosine distance metric is the most likely optimum metric. However, the
corresponding optimum thresholds for ECDF produced a wide range, primarily found
in the middle regions. In fact, cp has a secondary interest in the current demonstration
since a finer resolution of P can yield a more consequent estimate.

Thesis 6. In binary hierarchical clustering of amplitude spectrum of road-induced
vibrations, most likely the cosine distance maximizes the number of clustered elements
and minimizes the scattering in-between clusters. ■ Ref.: [2]
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Chapter 8

Summary

The Introduction excerpted the bibliographic sample analyses [1, 3] leading to the
motivation of the current dissertation, summarized in a Proposition.

Proposition. Based on the heterogeneous research topics of road vehicle vibration
studies, the lifetime of installed vehicle components and their design to take on loads
from amplitude- and frequency modulated excitation, as well as, the avoidance of
aversion in passenger comfort, and the vibration protection of transported loads are
central research subjects. Instead of studying the individual subsystems of the road–
vehicle–cargo system, it can be imperative to establish a standardized methodology,
since the final source of excitation is itself the road-induced vibration. ■ Ref.: [1, 3]

Non-stationary simulations gained increasing attention, not only in Packaging
vibration testing (PVT) but in disciplines concerned with the analysis and synthesis
of Road vehicle vibrations (RVV). The limitations of Power spectral density (PSD)
based simulations have inherent contrast to real-world RVV. That is, relying on a
single PSD, or Discrete Fourier transform (DFT) profile, substantively assumes the
stationarity of process; hence, the inverse Fourier transformation can produce only
stationary signals, when joint with a uniformly distributed random phase series. This
deviation is illustrated in Fig. 8.1, where the lack of transients in the synthesized signal
is to be noted. In effect, if a dynamic system has to be designed for taking on transient
loads, the adequacy of stationary simulations is seriously limited either as verification
in the modeling phase, or as validation in the post-design or pre-release phases.

The dissertation presented various occasions that the spectral content of RVV is far
from an autonomous process, far from being avoid of changes. It is therefore rightly
to assume non-stationarity in the time-frequency domain structure of RVV, as well.
The Chapter, Spectral non-stationarity, has presented that the STFT of measured RVV
show up varying spectral characteristic, i.e., the DFT profiles and its spectral moments
are non-stationarity over time, allowing the 1st thesis [4]. The example of Fig. 8.2 is a
good depiction of drive-train related frequency modulations, furthermore, significant
difference in spectral structure at stops, or increased noise levels at various subsections.
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A measured road vehicle vibration (M) and its PSD-based simulation (S)
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Figure 8.1: Comparison of real-world RVV with its PSD-based simulation. Pane a)
shows the first 10 min of measurement A from Chapter, Spectral non-stationarity, and
its Power spectral density in pane c) via black solid line. The PSD of the measured
signal, M, had been used to simulate a random signal with uniformly distributed random
phase in each iteration of the inverse Fourier transform, for 600 s in total. The resulted
synthesized signal, S, can be seen in pane b) in the time domain, and its re-computed
PSD in pane c) via gray dashed line. The overlap of the two PSD profiles are to be
noted, only the PSD of the simulated signal resulted a 28-order smaller difference in
the last bin.
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Thesis 1. I have presented that the shape of amplitude spectrum function is
not constant over time, due to the variation of the spectral shape manifested in the
time-frequency domain, which is due to transient events, and harmonic excitation in
accordance with the driving speed, compared to the spectral shapes of the steady-
state vibration intervals. The changes, therefore, occur locally on the time or space
horizon of the journeys, thus, for practical reasons it is reasonable to separate them
into homogeneous intervals. ■ Ref.: [4]

The time domain of RVV has been thoroughly investigated by scholars, as the author
had reviewed those methods in [5]. In order to find homogeneous sections within RVV
recordings, various changepoint- or event-detection algorithms have been published.
The Chapter, Analysis of prior algorithms, has analyzed the steps of available processes
since only a few insights under the hood of such algorithms are provided. As it has
turned out, the reproducibility can be easily challenged in most of the cases.

Thesis 2. I have observed that previous segmentation algorithms have been un-
calibrated and designed along heuristic considerations in several cases. Calibration
of detection algorithms is essential when investigating road-induced vibrations. For
verification purposes, the segment length distribution should be investigated on a test
sample, as a necessary complementary investigation beneath the receiver operating
characteristic. ■ Ref.: [5]

The bibliographic sample analyses has shown, that PVT originates in the mea-
surement and analysis of RVV, which soon expanded its scope to simulations [3],
foreshadowing the aims of current work embracing the 5th Thesis. The merit of a
second kind has also challenged a preconception. That is, the investigations had been
pre-dominantly limited to the time domain, whereby spectral non-stationarities are,
at the best, only mentioned. Therefore, it had to presented how the STFT structure
are inherently responsible for time domain non-stationarities. The novel algorithms
have been developed in Chapter, Development of segmentation, such as the Multiple
hypothesis testing by paired t-tests as published in [6]:

H
(j)
0 : dj = 0;

H
(j)
A : dj ̸= 0,

where dj = ai − ai+1, with ai denoting the DFT coefficients in the i-th timepoint of the
STFT. By two-sample t-tests, published in [7]:

H
(j)
0 : ai,k = ai,k+1;

H
(j)
A : ai,k ̸= ai,k+1.

where ai,k denotes the DFT coefficients in the i-th timepoint of the STFT through k

frequency components.
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Thesis 3. The surface formed by short-time Fourier amplitude spectrum can be
segmented in the time-frequency domain due to the temporal variation of the inherited
spectral shape. This can be done by applying paired-sample- and two-sample t-tests to
the Fourier coefficients of adjacent-to-adjacent amplitude spectra. ■ Ref.: [6, 7]

The spectral non-stationarity has been also supported by a conventional method
applied in a novel context, as discussed in the Section, CUSUM-type changepoint
detection [9]. While the algorithm needed custom implementation in lack of command-
line availability, the novel characterization of the STFT plane in the forms of spectral
moments was also necessary. The Chapter, Calibration of segmentations, has presented
that the Segment length distributions are a necessary company to Receiver operating
characteristics in the verification, leading to the next thesis [8].

Thesis 4. I have shown that there exists a significance level and it can be determined
for so-called CUSUM recursive algorithms—which algorithm searches for the local
extrema of the cumulative sum of deviations from the total mean—which significance
level minimizes the difference between the theoretical distribution of the segment lengths
of the test signal and the segment length distribution between the detected boundary
points. ■ Ref.: [8, 9]

While in Multiple hypothesis testing, the adjustment of significance limit is often
advised; it has been shown, the Bonferroni- and Holm–Bonferroni correction are too
strict in the long term for RVV segmentation purposes.

The developed changepoint detections could have been used on the sole reason of
segmentation as the basis of further quantitative analyses. It has been shown, that
the segment length- and RMS distributions did not allow to assume a bi-uniform joint
distribution. That is, not any RMS content can be imagined on arbitrary lengths.
Therefore, the simulation of non-stationary RVV followed the segmentation.

Each of the prior three segmentation methods can be used in a modular manner
during the simulation, Probability-based Spectrogram Synthesis (PBSS). For an eased
acceptability, the conventional CUSUM algorithm had been inherited [10]. Its further
advantages also emanates from the joint probability distribution of segment lengths
and -RMS. That is, every new segment-in-simulation has a length and RMS target
value according to random variables. The key idea in the synthesis of segments
excavated that the amplitude spectrum values in each frequency bin can be fitted with
individual distributions from the segment-to-simulate. That is, the synthesis is directly
accomplished in the time-frequency domain. Such a simulated signal is presented in
Fig. 8.3.

Thesis 5. A simulation routine can be constructed that can reflect spectral variations
in the time-frequency domain in a realistic manner; which simulates an arbitrary number
of different time-frequency domains from a single measurement realization; furthermore,
which simulates aggregate statistical properties of the registered road vehicle vibrations.
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Verifying this claim, I have presented the Probability-based Spectrogram Synthesis
procedure for simulating the 2nd, 3rd, and 4th spectral moments. Practical implications
of the thesis are:

5.1 Changepoints in the time-frequency domain can found simultaneously for transient
events, changes in the root mean square of the signal, and the appearance of
harmonic excitations in the road vehicle vibration signals.

5.2 Methods relying on magnitude modulation bypass the need for a priori and
heuristic adjustment of many parameters.

5.3 Road vehicle vibrations can be directly simulated in the time-frequency domain.

5.4 Modeling and simulation based on measured data outperforms in variability the
time-history replication method. ■ Ref.: [10]

It allows not only to achieve random segment length and -RMS pairs, but the
modeling of STFT values are simulated in each second of each segment of each simulation.
Therefore, given only one realization of RVV measurement, arbitrary number of different
artificial RVV can be obtained. Furthermore, given numerous RVV measurements, their
pooled sampling is applicable.

Not only a simulation could follow the segmentation. In the author’s opinion, the
composition of databases storing DFT characteristics will be sooner or later necessary.
In this problem, however, it can be rightly supposed that the similarity of spectral
profiles has to be investigated. In this manner, the hierarchical clustering of DFT
profiles in the STFT had been investigated in the Chapter, Clustering spectrums. While
this is based on a simplistic idea, no spectral clustering has appeared in the concerned
discipline of PVT [2].

Thesis 6. In binary hierarchical clustering of amplitude spectrum of road-induced
vibrations, most likely the cosine distance maximizes the number of clustered elements
and minimizes the scattering in-between clusters. ■ Ref.: [2]

As final thoughts, the current dissertation presented, how non-stationarity in RVV
can be approached from the time-frequency domain. The changes in spectral characteris-
tics can be found by the new algorithms. Furthermore, the presented simulation, PBSS,
allows the non-stationary STFT simulations. With the above theses and corresponding
methods, the practitioners have new tools to investigate dynamic systems subjected to
road-induced vibrations.
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Figure 8.2: Artifacts on the short-time Fourier transform of the 3rd measurement. The
gray-scale surface is overlayed by segment borders (dashed line) in the upper pane.
Various effects can be seen in the spectrogram, such as a) constant harmonic excitation
and its harmonics, possible one sub-harmonic; b) drifting harmonic excitation; c) broad-
band excitation for a prolonged period dominated by frequency range app. [1, 50] Hz
between [1220, 1320] s.
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Figure 8.3: Artifacts on the short-time Fourier transform of the 4th simulation. In the
upper pane: a) simulated stop, i.e., constant harmonic excitation with harmonics, b)
harmonic component with possible sub-harmonincs blended in background noise, c)
broad-band noise.
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Appendix A

Theses

A.1 Theses in English

Proposition. Based on the heterogeneous research topics of road vehicle vibration
studies, the lifetime of installed vehicle components and their design to take on loads
from amplitude- and frequency modulated excitation, as well as, the avoidance of
aversion in passenger comfort, and the vibration protection of transported loads are
central research subjects. Instead of studying the individual subsystems of the road–
vehicle–cargo system, it can be imperative to establish a standardized methodology,
since the final source of excitation is itself the road-induced vibration. ■ Ref.: [1, 3]

Thesis 1. I have presented that the shape of amplitude spectrum function is not
constant over time, due to the variation of the spectral shape manifested in the
time-frequency domain, which is due to transient events, and harmonic excitation in
accordance with the driving speed, compared to the spectral shapes of the steady-state
vibration intervals. The changes, therefore, occur locally on the time or space horizon
of the journeys, thus, for practical reasons it is reasonable to separate them into homo-
geneous intervals. ■ Ref.: [4]

Thesis 2. I have observed that previous segmentation algorithms have been uncalibrated
and designed along heuristic considerations in several cases. Calibration of detection
algorithms is essential when investigating road-induced vibrations. For verification
purposes, the segment length distribution should be investigated on a test sample, as a
necessary complementary investigation beneath the receiver operating characteristic. ■

Ref.: [5]

Thesis 3. The surface formed by short-time Fourier amplitude spectrum can be
segmented in the time-frequency domain due to the temporal variation of the inher-
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ited spectral shape. This can be done by applying paired-sample- and two-sample
t-tests to the Fourier coefficients of adjacent-to-adjacent amplitude spectra. ■ Ref.: [6, 7]

Thesis 4. I have shown that there exists a significance level and it can be deter-
mined for so-called CUSUM recursive algorithms—which algorithm searches for the
local extrema of the cumulative sum of deviations from the total mean—which signifi-
cance level minimizes the difference between the theoretical distribution of the segment
lengths of the test signal and the segment length distribution between the detected
boundary points. ■ Ref.: [8, 9]

Thesis 5. A simulation routine can be constructed that can reflect spectral varia-
tions in the time-frequency domain in a realistic manner; which simulates an arbitrary
number of different time-frequency domains from a single measurement realization; fur-
thermore, which simulates aggregate statistical properties of the registered road vehicle
vibrations. Verifying this claim, I have presented the Probability-based Spectrogram
Synthesis procedure for simulating the 2nd, 3rd, and 4th spectral moments. Practical
implications of the thesis are:

5.1 Changepoints in the time-frequency domain can found simultaneously for transient
events, changes in the root mean square of the signal, and the appearance of
harmonic excitations in the road vehicle vibration signals.

5.2 Methods relying on magnitude modulation bypass the need for a priori and
heuristic adjustment of many parameters.

5.3 Road vehicle vibrations can be directly simulated in the time-frequency domain.

5.4 Modeling and simulation based on measured data outperforms in variability the
time-history replication method. ■ Ref.: [10]

Thesis 6. In binary hierarchical clustering of amplitude spectrum of road-induced
vibrations, most likely the cosine distance maximizes the number of clustered elements
and minimizes the scattering in-between clusters. ■ Ref.: [2]
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A.2 Theses in Hungarian

Feltevés Az útgerjesztéssel foglalkozó tanulmányok heterogén kutatási tárgyai alapján,
főként a beépített járműalkatrészek élettartama és azok amplitúdó- és frekvenciamodulált
gerjesztésekre történő méretezése, továbbá az utaskomfortérzet averzív befolyásoltságá-
nak elkerülése, valamint a szállított rakományok rezgésvédelme a kutatások központi
tárgyai. A pálya–jármű–rakomány egyes alrendszereinek tanulmányozása helyett cél-
ravezető az egységesített módszertan létrehozása, tekintve, hogy ugyanaz a gerjesztés
végső forrása maga az útgerjesztés. ■ Ref.: [1, 3]

1. Tézis Bemutattam, hogy az amplitúdóspektrum alakja időben nem állandó, az
idő-frekvencia tartományban lezajló spektrális változás okán, amely a tranziens es-
emények és a menetsebességben bekövetkező és azzal összfüggésben jelentkező har-
monikus gerjesztések hatására jön létre, összevetve az állandósult rezgésű szakaszok
spektrális alakjaival. A változások ennélfogva lokálisan jelentkeznek az utazások idő-
vagy térhorizontján, így praktikus szempontokból ezek szeparációja homogén interval-
lumokra indokolt. ■ Ref.: [4]

2. Tézis Megfigyeltem, hogy a korábbi szegmentálási algoritmusok heurisztikus meg-
fontolások mentén, több esetben kalibrálatlanul publikáltak. Az algoritmusok kali-
brációja elengedhetetlen a detektálási feladatokban az útgerjesztés vizsgálata során.
Verifikációs célból, próbamintán tesztelhető a szegmenshossz eloszlás, amely a detektor
jelleggörbéjének szükségszerű kiegészítő vizsgálata. ■ Ref.: [5]

3. Tézis A rövid-idejű amplitúdóspektrumokból kialakított felület az idő-frekvencia
tartományban szegmentálható a spektrális alak időbeni változásának okán. Erre al-
kalmasak a páros mintás- és kétmintás t-tesztek a szomszédos amplitúdóspektrumok
Fourier-együtthatóira alkalmazva, amelyeket két-, majd egy-másodperces időbeni fel-
bontás esetén mutattam be. ■ Ref.: [6, 7]

4. Tézis Bemutattam, hogy létezik és meghatározható olyan szignifikancia-szint, az át-
lagtól vett eltérések kumulatív összegsorának lokális szélsőértékeit keresvő ún. CUSUM
rekurzív algoritmusok esetén, amely szignifikancia-szint minimalizálja tesztjelbeni szeg-
menshossz elméleti eloszlása és a detektált határoló pontok közötti szegmenshossz-
eloszlás közötti különbséget. ■ Ref.: [8, 9]

5. Tézis Konstruálható olyan szimulációs rutin, mely az idő-frekvencia tartományban
spektrális változások valóságközeli tükrözésére képes; amely rutin egy mérési realizáció
esetén tetszőleges számú különböző idő-frekvencia tartományt szimulál; továbbá, amely
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rutin tetszőleges számú mérési realizáció esetén a regisztrátumok aggregált statisztikai
vonatkozásait szimulálni képes. Az állítás igazolására a 2., 3., és 4. spektrális nyomaté-
kokat szimuláló eljárást mutattam be. A tézis gyakorlati következményei:

5.1 Tranziens események, a jel effektív középértékében bekövetkező változások, továbbá
a harmonikus gerjesztések együttesen szegmentálhatók az idő-frekvencia tar-
tományban.

5.2 A magnitúdó modulációra támaszkodó eljárások kikerülik az a priori szük-
ségességét és számos paraméter heurisztikus beállítását.

5.3 Az útgerjesztés közvetlenül szimulálható az idő-frekvencia tartományban.

5.4 Mérési adatokra támaszkodó modellezés és szimuláció jellegőből fakadóan előrelépést
jelent a jelek direkt visszajátszásához, azaz reprodukálásához képest. ■ Ref.: [10]

6. Tézis Az útgerjesztés jelek amplitúdóspektrum-függvényeinek bináris hierarchikus
klaszterezése során a legnagyobb valószínűséggel a koszinusz távolságmutató maximálja
a klaszterelt elemek számát és minimálja a klaszterek szóródását. ■ Ref.: [2]
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