
Ősz Olivér

Methods for scheduling industrial processes

Módszerek ipari folyamatok ütemezésére

Doctoral dissertation

Doktori értekezés

Témavezető:

Dr. Hegyháti Máté

Egyetemi docens

Multidiszciplináris Műszaki Tudományi Doktori Iskola

Széchenyi István Egyetem

Contents

1 Introduction 11

2 Literature overview of modelling methods for scheduling 15

2.1 Classification of scheduling problems . 15

2.2 Modeling scheduling problems with MILP 18

2.3 Constraint Programming . 20

2.4 S-graph methodology . 21

2.4.1 Modeling schedules with S-graphs 22

2.4.2 Algorithms for finding the optimal schedule 26

3 Improved MILP models for scheduling wet-etch stations 31

3.1 Problem definition . 32

3.2 Literature approaches . 36

3.3 Proposed model improvements . 37

3.3.1 Improving the model by Aguirre et al. (2013) 37

3.3.2 Extending the model by Castro et al. (2012) 42

3.4 Computational tests . 47

3.5 Summarizing statements . 51

4 S-graph approach for RCPSP and its variants 53

4.1 Problem definitions . 53

4.2 Literature approaches . 55

4.3 Proposed S-graph solution method . 57

4.3.1 Solution for the single-mode problem 57

4.3.2 Solution for the multi-mode variant 59

4.3.3 Solution for time-varying resource capacities 62

4.4 Computational tests . 64

3

CONTENTS

4.4.1 Single-mode results . 64

4.4.2 Multi-mode results . 65

4.5 Summarizing statements . 68

5 Scheduling a forge with die deterioration 69

5.1 Related literature . 70

5.2 Problem definition . 71

5.2.1 Forging . 71

5.2.2 Heat treatment . 72

5.2.3 Preparation and machining . 73

5.2.4 Flexibility, objective and cost evaluation 73

5.3 Proposed MILP model . 74

5.3.1 Defining the discrete uniform time grid 74

5.3.2 Forging and heat treatment processes 75

5.3.3 Material balance . 76

5.3.4 Objective . 78

5.3.5 Model improvements . 78

5.4 Computational results . 79

5.4.1 Illustrative example . 79

5.4.2 Performance analysis . 81

5.5 Summarizing statements . 83

5.6 Nomenclature . 84

6 S-graph approach for minimizing freshwater usage 87

6.1 Problem definition . 88

6.2 Literature summary . 89

6.3 Proposed approach . 91

6.3.1 New branching method . 91

6.3.2 Demonstrative example . 93

6.4 Empirical validation . 98

6.4.1 Example 1 . 98

6.4.2 Example 2 . 100

6.5 Summarizing statements . 103

7 Conclusions and future prospects 105

4

CONTENTS

Bibliography 109

5

List of Figures

2.1 Precedence graphs . 16

2.2 Process flow of the illustrative example . 22

2.3 Recipe-graph of the illustrative example 23

2.4 Gantt chart of the initial schedule . 23

2.5 S-graph of a partial schedule with UIS schedule-arcs 24

2.6 Gantt chart of the partial schedule . 25

2.7 S-graph of a partial schedule with NIS schedule-arcs 25

2.8 Schedule-graph with UIS tasks . 28

2.9 Gantt chart with UIS tasks . 29

2.10 Schedule-graph with NIS tasks . 29

2.11 Gantt chart with NIS tasks . 29

3.1 AWS recipe structures . 33

3.2 Problem data of the case study by Aguirre et al. [5] 35

3.3 Optimal schedule of the case study by Aguirre et al. [5] 35

4.1 Example RCPSP recipe graph . 58

4.2 Resolving the incompatibility between tasks 7 and 9 59

4.3 Optimal schedule with all 3 resource usages presented 60

4.4 Example RCPSP recipe graph with virtual tasks 63

4.5 Schedule of the example with time-varying resource capacities 64

4.6 Solution times for the j10 dataset . 67

5.1 Optimal schedule of the forging dies . 81

5.2 Resource levels of the optimal schedule . 81

6.1 Recipe graph of case study by [59] (node 0) 93

6.2 S-graph after the first assignment (node 1) 94

7

LIST OF FIGURES

6.3 S-graph of node 2 . 94

6.4 S-graph of node 3 . 95

6.5 S-graph of node 4 . 95

6.6 S-graph of node 5 . 96

6.7 Top of the B&B tree of the algorithm . 96

6.8 B&B tree of the algorithm - extended . 97

6.9 S-graph solution for Example 1 . 99

6.10 Schedule obtained for Example 1 . 99

6.11 S-graph solution for the cyclic variant of Example 1 100

6.12 Cyclic schedule for Example 1 . 100

6.13 Schedule for Example 2 with makespan = 5 h, cycle time = 4 h 101

6.14 Pareto-optimal solutions for Example 2 . 102

6.15 Schedule for Example 2 with makespan = 4.5 h 102

6.16 Schedule for Example 2 with makespan = 4 h 102

8

List of Tables

3.1 Constraints contained in the 4 models . 42

3.2 Test results for the case study by Aguirre et al. [5] 48

3.3 Solution times (s) for permutation flow-shop problems with 1 robot 48

3.4 Makespan for permutation flow-shop problems with 1 robot 49

3.5 Solution times (s) for permutation flow-shop problems with 2 robots 50

3.6 Solution times (s) for permutation flow-shop problems with 2 robots 51

4.1 Solution times (s) for dataset j30_1 . 65

4.2 Solution times for dataset 5 of j30 . 66

4.3 Solution statistics for the j12 dataset . 67

5.1 Supply shipments . 80

5.2 Product orders . 80

5.3 Cost parameters . 80

5.4 Axle-dependent parameters . 80

5.5 Other parameters . 80

5.6 Parameter intervals for orders and starting supplies 82

5.7 Intervals of other parameters . 82

5.8 Solution times (CPU s) of different model variants 83

6.1 Limiting water data for Example 1 . 98

6.2 Limiting water data for Example 2 . 101

9

Chapter 1

Introduction

Scheduling is a research field under operations research that deals with optimization prob-

lems containing timing-related decisions. As time is an important aspect in our life,

scheduling problems arise in lots of vastly different areas. Some examples are timetabling,

CPU scheduling, supply-chain management, project planning, and production scheduling.

My research is focused on the latter, the scheduling of industrial processes in manufactur-

ing systems, with possible applications of the methods in logistics and project planning

as well.

As in all optimization problems, the goal is to find the best solution among a lot of

possible alternatives. In scheduling, the solution is a schedule, which contains decisions

about the timing of events, and other related values, such as resource allocations, trans-

portation paths, and material quantities. The quality of the solution is defined by the

objective function, which assigns a numerical value to each solution. The goal is to find

the solution with the lowest or largest such value, depending on whether it is a mini-

mization or maximization problem. The most often occurring objective is to minimize

the maximum completion time over a set of processes. Other examples for objectives are

minimization of operation costs, investment costs, delay, or maximization of hourly profit.

An optimization problem is defined by the set of available decisions, the constraints

they must satisfy, and the previously mentioned objective function. The problem defini-

tion consists of two parts: model and data. The types of decisions, their parameterized

constraints, objective function, and the types of required parameters are described in the

model, which defines a whole class of problems. For example, this determines whether

the lengths of processes are constant, or dependent on other decisions such as machine

allocation, or variable among bounds with associated cost parameters. For an instance of

11

1. INTRODUCTION

this problem class, the problem data define the actual parameters, such as the number of

processes, their operational parameters, resource requirements, etc.

The research problems in scheduling research are to create efficient solution algorithms

for finding optimal, or near-optimal solutions for scheduling problems. As even fairly sim-

ple scheduling problems have NP-hard complexity, exact solution approaches guaranteeing

optimality have exponentially increasing execution times in relation to problem sizes. For

this reason, heuristic approaches are also actively researched, which are not guaranteed

to find the globally optimal solution but can quickly obtain good solutions even for large

problems. My research is concentrated on exact solution methods because as computa-

tional power is increasing and the algorithms are improving, more and more practical

problems can be solved to optimality in reasonable execution times. Furthermore, exact

and heuristic methods are often used in combination, so it is important to research im-

provements to both approaches. Also, most exact algorithms can be stopped to provide

the best found solution even before proven optimality is reached, and an upper bound on

the deviation from the optimal solution is known.

During my research, I investigated several problem classes and different solution tech-

niques. Some of the problems come from theoretical classifications that apply to a wide

range of scheduling problems, while others come from case studies of specific application

areas. This work contains both types of problems.

Scheduling has a vast literature, and there are already numerous known problems and

solution approaches, although there is still a lot of room for further research. My research

has multiple motivations:

– Identify new problem classes in practice that have not been investigated in the

literature, and propose solution methods for them.

– Extend the capabilities of existing solution methods, so they can be applied to a

more general problem class.

– Improve the performance of existing solution approaches.

Chapter 2 gives an introduction to the existing solution approaches that I used and

improved upon. Here, modeling techniques of Mixed-Integer Linear Programming (MILP)

and the concepts of the S-graph methodology are presented.

The following chapters show the theses about the results of my research for different

scheduling problems. Chapter 3 presents the problem of scheduling automated wet-etch

stations used in semiconductor manufacturing, and MILP solution approaches. Chap-

12

1. INTRODUCTION

ter 4 presents an extension of the S-graph framework for Resource-Constrained Project

Scheduling Problems (RCPSP). In Chapter 5, a new type of scheduling problem in the

steel-processing industry is defined and solved with an MILP model. Chapter 6 presents

an S-graph based approach for considering water reuse during scheduling to minimize

freshwater usage. Finally, Chapter 7 summarizes the conclusions of this research.

13

Chapter 2

Literature overview of modelling

methods for scheduling

In this chapter, the related literature is reviewed, and the concepts which my research

is based on, are introduced. First, problem characteristics that are frequently used to

distinguish different scheduling problems are explained in Section 2.1. Then, various

modeling methods used by MILP approaches are presented in Section 2.2. The methods

of Constraint Programming are presented in Section 2.3. Then, Section 2.4 introduces

the basics of the S-graph approach, which I used in several parts of my research.

2.1 Classification of scheduling problems

In every scheduling problem, there are processes that take time, and usually require

some resources to execute them. In production systems, there are continuous and batch

processes. The difference between them is how their input/output is consumed/produced.

Continuous processes consume and produce resources continuously during their execution,

with either a fixed or variable rate. Batch processes consume all their input when they

are started, and produce all their output when finished. These two types require different

modeling techniques, and both have a vast literature. In this research, only batch processes

are considered.

A process may have several subprocesses with different characteristics, and there are

multiple names for them in the literature; so to avoid confusion, I will refer to atomic

processes as tasks, and sets of related tasks as jobs. A typical job is to produce a given

amount from a certain product, and the required production steps are the tasks of this

15

2. LITERATURE OVERVIEW OF MODELLING METHODS FOR SCHEDULING

job.

In a production process, some steps must be carried out in a fixed order. These

orderings can be represented by a directed acyclic graph, which is called a precedence

graph. Its nodes are the tasks and its arcs are the fixed orders between them. Most

jobs have a linear task sequence, with no branching in their precedence graph. However,

a task may have multiple prerequisites or dependent tasks in some production systems.

This happens most typically when the task requires materials produced by separate tasks,

or produces materials that are used for multiple other tasks. Figure 2.1 shows examples

for both types of jobs.

(a) Sequential jobs (b) Tasks with multiple inputs or outputs

Figure 2.1: Precedence graphs

Scheduling may include batching decisions, which determine the sizes (material quan-

tities) and number of batches for each job. Sizes are constrained by capacities of the

production equipment, and they can affect the processing times of batches. This highly

complicates scheduling, so these decisions are usually made separately, before scheduling.

In this research, fixed batch sizes and numbers are assumed in each problem.

Production equipment is an important resource in production planning. Single equip-

ment units of a production system will be referred to as machines. A machine can only

execute one task at a time, which imposes a constraint on the scheduling of tasks. It

is also usually assumed that a task is fully executed on one machine, not split between

multiple machines, and its execution cannot be interrupted (non-preemptive).

There can be multiple identical machines, or machines that differ in capabilities or at

least in processing speed. Therefore, in the general case, the set of suitable machines and

their corresponding processing times must be given for each task. However, some special

cases of scheduling sequential jobs have been investigated in more detail in the literature.

In a flow-shop scheduling problem, each job goes through the same machine sequence.

A specific subclass of flow-shop problems, the so-called permutational flow-shop, also

requires the that the job order is the same on each machine. Job-shop scheduling is a

16

2. LITERATURE OVERVIEW OF MODELLING METHODS FOR SCHEDULING

more general problem, where jobs can have different machine sequences. Flexible variants

of these problems allow multiple identical machines to be present at each stage. Reentrant

variants allow jobs to visit the same machine (or set of machines) multiple times during

their execution.

Apart from the actual production tasks, there can be several additional time-consuming

operations constraining the schedule. Materials may need transportation between the ma-

chines, requiring time and equipment (see Chapter 3). Machines may require cleaning,

maintenance or changeover operations between different tasks (see Chapter 5).

Besides the machines, tasks may require additional resources (see Chapter 4) for exe-

cution, for example, freshwater (see Chapter 6), human workers, or raw materials.

Between two consecutive tasks of a job, the intermediate material may need storage if

the later task cannot start immediately. If storage is abundant, Unlimited Intermediate

Storage (UIS) is assumed. However, in some production systems (especially in chemical

plants), storing these materials is not trivial, and must be considered during scheduling.

Materials may have Finite (FIS) dedicated, Common (CIS) shared, or No Intermedi-

ate Storage (NIS). Machines can store intermediates but cannot execute tasks in the

meantime. Some intermediates may be unstable, and they cannot be stored indefinitely

between tasks (see Chapter 3). Based on the limit on this waiting time, the constraint on

an intermediate may be Zero-Wait (ZW), Limited Wait (LW), or Unlimited Wait (UW).

While mathematical methods can provide theoretically optimal solutions, many things

can go wrong in practice. There are different ways to deal with this problem. Stochastic

scheduling can utilize statistical data and probabilistic simulations to provide a good

solution even in uncertain circumstances [31, 52]. Robust optimization can give solutions

that can better withstand certain disruptions [14]. Machine learning techniques can help

in robust planning and scheduling of production systems [70, 93]. Reactive scheduling can

be used to recover from an unexpected situation or to adapt to changing demands [99].

In the problems investigated in the theses, I assumed deterministic behavior, although

the developed methods can be used in a reactive or robust fashion as well, with minor

modifications. I also collaborated on a project addressing uncertainty during scheduling

[22].

17

2. LITERATURE OVERVIEW OF MODELLING METHODS FOR SCHEDULING

2.2 Modeling scheduling problems with MILP

Mathematical programming is the most commonly used solution method for scheduling

problems. The underlying algorithms for Linear Programming and Integer Programming

are well established, efficient techniques. Leading commercial general-purpose solvers

like Gurobi1 or CPLEX2 can quickly solve most complex MILP models to optimality.

Therefore, scheduling research is concentrated on formulating these models to be effi-

ciently solvable, rather than developing solution algorithms. However, there are some

exceptions, as problem-specific algorithms can greatly increase solution performance, for

example: defining custom branching strategies, cutting planes, facet-lifting procedures,

decomposition techniques, and utilizing heuristic methods. From research perspective,

using open-source solvers, such as from the COIN-OR project3, also has merits, as the

solution techniques and the aiding heuristics used in commercial solvers are not publicly

available, which is against transparent research.

An extensive review of MILP modeling techniques for batch process scheduling was

composed by Méndez et al. [67], and more recently by Harjunkoski et al. [36]. Here, a

short introduction is presented to help in understanding the theses.

An MILP model is a set of linear equalities, inequalities, and a linear objective function

to be minimized or maximized. They consist of continuous (real-valued) and integer

variables, and constant parameters.

A crucial difference between MILP scheduling models is how they represent timing

decisions. Precedence-based models [68] use binary sequencing variables for task pairs

to decide their execution order in case they require the same machine. For example,

a variable xi,i′ can represent the order between task i and i′, so that if xi,i′ = 1, then

i must be finished before i′ is started. Starting times of each task are represented by

continuous variables, and constrained by these sequencing variables. An example is shown

in Constraint (2.1), where tsi is the starting time of task i, di is its duration, and M is

a sufficiently large number that the inequality always holds when xi,i′ = 0. This type of

constraint is called a big-M constraint.

tsi′ ≥ tsi + di −M(1− xi,i′) ∀i, i′ ∈ I : i ̸= i′ (2.1)

1https://www.gurobi.com
2https://www.ibm.com/analytics/cplex-optimizer
3https://www.coin-or.org

18

https://www.gurobi.com
https://www.ibm.com/analytics/cplex-optimizer
https://www.coin-or.org

2. LITERATURE OVERVIEW OF MODELLING METHODS FOR SCHEDULING

As precedence only needs to be set when the tasks are executed on the same machine,

these variables must be connected to the assignment variables. For example, this can be

achieved with binary variables of the form yi,j, denoting whether task i is assigned to

machine j. An example for connecting the two types of decision variables is shown in

Constraint (2.2).

1 ≥ xi,i′ + xi′,i ≥ yi,j + yi′,j − 1 ∀i, i′ ∈ I, j ∈ J : i ̸= i′ (2.2)

Another way to represent time is to define time points and assign events to them to

create the schedule. In this case, scheduling decisions are binary assignment variables

indexed by time points, for example, si,t represents whether task i is started at time point

t.

The time points can be separators of a predefined interval partitioning of the considered

time horizon [53]. This so-called discrete time point model creates an equidistant, fixed

global time grid. While this simplifies modeling of resource availability, the number of

required time points can be too large, which can lead to too many binary variables and

high computational needs. Task durations must be rounded up to multiples of the interval

length, so decreasing the number of time points leads to wasted time by moving some

events to the next time point.

To decrease the number of time points, their position can be set by continuous vari-

ables. The time points can be either global for all events [90], or unit-specific [16], where

each machine has a separate set of time points (also called time events in this case). Both

approaches lead to fewer time points but since their synchronization is more complex, the

number of time points still needs to be set to the minimum for good solution performance.

Unfortunately, it is difficult to determine the minimum number of time points, so practice

is to solve the model iteratively, with increasing number of time points, and stop when

the objective value is not improving anymore, which does not guarantee optimality.

Another important aspect of the MILP models is the modeling of resource balances.

In precedence-based formulations, the number of executions and batch sizes for each task

must be predetermined. However, time point models are able to decide the numbers and

sizes of tasks during optimization, based on the given material flows and demands. For

this purpose, two network-based techniques became popular: STN and RTN.

In the STN (State-Task Network) representation proposed by Kondili et al. [53], tasks

and machines are assigned to start and finish at certain time points, and material quan-

19

2. LITERATURE OVERVIEW OF MODELLING METHODS FOR SCHEDULING

tities are set by continuous variables. Material availability at each state of processing,

and at each time point, is represented by continuous variables, and updated by material

balance constraints based on the assignments. This makes it simple to set both lower and

upper limits for storage quantities.

The RTN (Resource-Task Network) representation by Pantelides [83] uses a similar

approach, the key difference being that machines and materials are treated in the same

way, as resources consumed and produced by tasks. This simplifies the model description,

and inherently eliminates redundant schedules only differing in the assignments of identical

machines. However, considering machines as resources makes it difficult to model certain

unit-specific constraints, such as unit-specific transfer times, cleaning, and changeover

times.

Both STN and RTN representation are still used in the literature for various scheduling

problems [14, 92, 107]. To keep up with the recent trends in research, they have been

extended for energy-efficient approaches too [48, 98].

When jobs are sequential and batch sizes are predetermined, material balance con-

straints are not necessary. In these models, instead of time points, the time intervals

between them are in focus, which are often referred to as time slots [85].

There is no best method among these formulations, as each one has advantages and dis-

advantages when modeling problem-specific constraints. Therefore, each modeling tech-

nique is still widely used in scheduling.

2.3 Constraint Programming

Constraint Programming (CP) has only become widespread for scheduling problems in the

last 20 years, so it is not as widely used as mathematical programming. CP is a technique

for solving Constraint Satisfaction Problems, in which constraints are written as equations

and logical statements, consisting of decision variables and parameters. A distinguishing

feature of CP is the use of inference during search, called constraint propagation. This

technique improves upon the classic backtracking search by using the available information

from previous decisions to forbid values or combinations of values for some variables that

would make it impossible to satisfy a subset of the constraints [10].

Constraint modeling for CP is similar to formulating mathematical programming mod-

els. CP can deal with nonlinear constraints more efficiently than mathematical program-

20

2. LITERATURE OVERVIEW OF MODELLING METHODS FOR SCHEDULING

ming, so unlike in MILP models, even polynomial terms can be present, and more types

of constraints are allowed, such as non-equality, logical implication, conjunctions, and

disjunction. However, just as mathematical programming loses a great amount of its ef-

ficiency when nonlinearity is present, problems with continuous variables pose a difficult

challenge for CP methods. While there are special techniques for these problems, CP is

the most powerful when working with discrete variables. For scheduling problems, this

means that CP methods mostly use discrete time models like global uniform time grids.

CP is a solution method for satisfaction problems but it can be used for optimization

by iteratively solving the model while using the objective of the previous solution as a

constraint to find a strictly better solution. When a solution is found, the search does not

need to be restarted, it can be continued with the updated constraint on the objective

value. When the problem becomes unsatisfiable, the last solution found (if any) is the

optimal solution.

There are several CP solvers available. As CP is often used for parts of MILP solution

techniques, commercial MILP solvers like Gurobi and CPLEX can also handle CP models.

But there are solvers specifically for CP as well. One of the best of such solvers is an

open-source project by Google, OR-Tools4. It has won the MiniZinc Challenge solver

competition in most categories from 2018 to 20215.

2.4 S-graph methodology

The S-graph model and the associated solution procedure was introduced by Sanmartí et

al. [88, 89], a joint work from Universitat Politècnica de Catalunya (Barcelona, Spain) and

University of Pannonia (Veszprém, Hungary). I started studying at the latter in 2011,

and the next year I joined the scheduling research group involved in the development of

the S-graph solver framework. The motivation behind the S-graph approach was to solve

batch process scheduling problems with an efficient, scheduling-specific algorithm, and to

correctly model both UIS and NIS tasks, from which the latter is problematic in MILP

models [24, 40]. Since its introduction, it was extended to different problem classes with

success, achieving promising solution performances.

The two main pillars of the S-graph approach are a graph-based mathematical model

to represent schedules, and a B&B (branch-and-bound) algorithm.

4https://opensource.google/projects/or-tools
5https://www.minizinc.org/challenge2021/results2021.html

21

https://opensource.google/projects/or-tools
https://www.minizinc.org/challenge2021/results2021.html

2. LITERATURE OVERVIEW OF MODELLING METHODS FOR SCHEDULING

2.4.1 Modeling schedules with S-graphs

Formally, an S-graph is a directed graph G(N,A). There are two types of nodes: task

nodes (Nt) representing the start times of tasks, and product nodes (Np) representing the

completion times of products (Nt ∪ Np = N,Nt ∩ Np = ∅). Arcs too have two classes

(A1∪A2 = A,A1∩A2 = ∅): recipe-arcs (A1 ⊂ Nt×N) and schedule-arcs (A2 ⊂ N ×Nt).

A nonnegative weight is defined for each arc (c(i, i′) ∀(i, i′) ∈ A), representing the minimal

required time difference between the events associated with the two nodes. This means

that task i′ cannot start (or product i′ cannot be completed) earlier than c(i, i′) time units

later than the start time of task i (or completion time of product i). A machine set is

defined for each task node (Si ∀i ∈ Nt) to represent the set of available machines for the

task.

The solution procedure starts with a special S-graph, the recipe graph (G(N,A1)),

which is generated from the input parameters. A recipe-arc (i, i′) ∈ A1 is present if there

is a mandatory precedence relation between tasks i and i′, or if i is the final task of

product i′. The recipe-graph contains no schedule-arcs (A2 = ∅). Arc weights are the

minimum possible processing times: c(i, i′) = min
j∈Si

{pti,j} ∀(i, i′) ∈ A1, where pti,j denotes

the processing time of task i on machine j.

As an illustrational example, the S-graph representation of a problem by Ferrer-Nadal

et al. [24] is presented. Figure 2.2 shows the production paths and processing times (h) of

the 4 products (A, B, C, D) among the 4 machines (U1, U2, U3, U4). The corresponding

recipe-graph is shown in Figure 2.3. In this problem, each task has only one suitable

machine (|Si| = 1 ∀i ∈ Nt), which simplifies the calculation of minimal processing times

needed to determine the arc weights.

Figure 2.2: Process flow of the illustrative example

The time differences represented by arc weights are transitive, so directed paths also

impose a timing constraint with the sum of the arc weights. The weights are lower bounds

22

2. LITERATURE OVERVIEW OF MODELLING METHODS FOR SCHEDULING

Figure 2.3: Recipe-graph of the illustrative example

on the time difference, so if there are multiple paths between two nodes, the one with

the highest sum of weights is dominant. The longest path in the graph the one with

the maximal such sum, which represents the makespan (total completion time) of the

schedule.

The recipe-graph represents a partial schedule without any sequencing decisions, so

its makespan does not account for machine availability but gives a lower bound on the

possible makespan. In the example recipe-graph, the longest path is B1-B with a weight

of 48 h. This is the theoretical limit: the optimal solution cannot be below 48 h, even if

all products were processed in parallel, without any waiting between stages, as shown by

the Gantt chart in Figure 2.4. However, some waiting is often inevitable when machines

have different workloads.

Figure 2.4: Gantt chart of the initial schedule

When multiple tasks are executed by the same machine, their order needs to be de-

cided, as a machine can only execute one task at a time, and must finish it before starting

23

2. LITERATURE OVERVIEW OF MODELLING METHODS FOR SCHEDULING

a new one. These sequencing decisions can be represented by adding schedule-arcs to the

graph. There are two main ways to do this, based on the storage policy of the intermediate

materials involved: UIS or NIS.

If UIS policy is used, a machine can start its next task anytime after the current task

is finished. This is represented by adding a schedule-arc starting at the node of the earlier

task and ending at the node of the later task, with a weight equal to the processing time

of the earlier task. For example, if U1 has the task sequence A1-B1-C3, and U2 has C2-

B2-D3, the resulting S-graph can be seen on Figure 2.5, with the schedule-arcs highlighted

in blue. The corresponding Gantt chart is shown in Figure 2.6. The top part contains

all tasks grouped by products, while the bottom part only contains the assigned tasks

grouped by the machines they are assigned to. Red arrows indicate precedence relations

that cause wait times before some of the tasks.

Figure 2.5: S-graph of a partial schedule with UIS schedule-arcs

If NIS policy is used, the machine acts as a storage until output materials are removed

and transferred to the their next production step6. In this case, schedule-arcs start from

the successor task(s) of the earlier task, and have 0 weights (these weights are often

omitted in graphical representations for a clearer figure). If NIS is used in the previous

example, the same sequencing decisions lead to an infeasible schedule. This is indicated

by a directed cycle in the S-graph, shown in red in Figure 2.7. If the cycle had a positive

6Here, it is assumed that all input materials of a task are transferred to the machine at the same
time, so its execution can start immediately, without the machine acting as storage before execution. To
handle the more general case, a model transformation is necessary [45].

24

2. LITERATURE OVERVIEW OF MODELLING METHODS FOR SCHEDULING

Figure 2.6: Gantt chart of the partial schedule

weight, it would indicate that a task should start later than its start time. The B2-C3-B2

cycle has 0 weight, which indicates a cross-transfer: the materials in 2 or more machines

(U1 and U2 in this case) have to switch places with each other, which is not possible

without intermediate storage.

Figure 2.7: S-graph of a partial schedule with NIS schedule-arcs

Usually, all materials have the same storage policy but it is possible to model a mixed

policy, where each task is classified as UIS or NIS (NUIS ∪NNIS = Nt, NUIS ∩NNIS = ∅),

and their schedule-arcs are added accordingly.

25

2. LITERATURE OVERVIEW OF MODELLING METHODS FOR SCHEDULING

2.4.2 Algorithms for finding the optimal schedule

The scheduling decisions are made by a B&B algorithm which enumerates the search

space to find the optimal schedule. The high-level solution procedure is an ordinary B&B

algorithm, as it is shown in Algorithm 2.1. The root node contains the recipe-graph and

any variables needed by the branching procedure.

Algorithm 2.1 Structure of the B&B algorithm
Open := {root_node}
best := ∅
while Open ̸= ∅ do
current := selectAndRemove(Open)
if best = ∅ ∨ bound(current) < bound(best) then
Children := branching(current)
if Children = ∅ then
best := current

else
Open := Open ∪ Children

end if
end if

end while
return best

The bound can be calculated thanks to the way how decisions are modeled by the

S-graphs. Sequencing decisions introduce new arcs, and assignments may increase arc

weights, as the actual processing time can be higher than the minimum that was used

in the recipe-graph. By applying these operations, the weight of the longest path cannot

decrease between any two nodes. Therefore, the longest path in any S-graph is a lower

bound on the makespan of schedules reachable from it [88]. This value is used as the

bound in the B&B procedure. For efficient calculation, the implementation does not

perform a longest path search at each node, instead, a matrix stores the longest paths

between each node pair, and it is updated when an arc or weight is modified. If there is

a directed cycle in the graph, the bound function returns ∞ to signal infeasibility.

Scheduling decisions are made in the branching step of the B&B algorithm to partition

the search space. This can be done in different ways. The algorithm published by Sanmartí

et al. [88, 89] was later named as the equipment-based branching. It selects a machine,

and for each unassigned task that the machine can perform, it creates a partition where

this task is performed on this machine after the previously assigned tasks. The formal

branching procedure is presented in the following.

26

2. LITERATURE OVERVIEW OF MODELLING METHODS FOR SCHEDULING

The algorithm requires storing the following data for each node:

G(N,A1 ∪ A2) contains the nodes and arcs of the S-graph.

c defines the values of each arc weight, which can be stored in the graph adjacency

matrix (the maximum weight is stored for duplicate arcs).

Si ∀i ∈ Nt are the sets of available machines.

SOUN is the set of tasks that are not scheduled yet, initially containing all tasks.

last_node is an array indexed by the set of machines (M), where last_node[j] is the

last task scheduled to machine j, or ∅ if no task is assigned to the machine yet,

which is the initial value of each element.

Child nodes are generated from the current node in the following way:

1. If every task is already scheduled (SOUN= ∅), the current node is a solution, no

further branching is possible, return ∅.

2. Select a machine j, which has at least one task that can be assigned to it: {i ∈

SOUN | j ∈ Si} ≠ ∅.

3. For each task i that can be assigned to j, create a branch where i is scheduled as

the next task on j. That is, create a child node (G′(N,A1 ∪ A′
2), c′, {S ′

i ∀i ∈ Nt},

SOUN′, last_node′), such that:

– Weights on the recipe-arcs starting from i are updated to the processing time

on j: c′(i, i′) = pti,j ∀(i, i′) ∈ A1.

– Weights of other recipe-arcs remain unchanged:

c′(k, k′) = c(k, k′) ∀(k, k′) ∈ A1 : k ̸= i.

– Schedule-arcs are added between l := last_node[j] and i:

– If l ∈ NUIS, A′
2 = A2 ∪ {(l, i)}, c′(l, i) = min

j∈Sl

{ptl,j}.

– If l ∈ NNIS, A′
2 = A2 ∪ {(k, i) ∀(l, k) ∈ A1}, c′(k, i) = 0 ∀(l, k) ∈ A1.

– If i ∈ NUIS, weights of existing schedule-arcs starting from its node are updated

to the processing time (just like with the recipe-arcs): c′(i, i′) = pti,j ∀(i, i′) ∈

A2.

– Weights of other schedule-arcs remain unchanged:

c′(k, k′) = c(k, k′) ∀(k, k′) ∈ A2.

– Other machines are removed from the available set of i: S ′
i = {j}.

– i becomes scheduled: SOUN′ = SOUN \ {i}.

– i becomes the last task of j: last_node′[j] := i,

last_node′[k] = last_node[k] ∀k ∈ M : k ̸= j.

27

2. LITERATURE OVERVIEW OF MODELLING METHODS FOR SCHEDULING

4. If every task that can be assigned to j has at least one other available machine, also

create a child node (G(N,A1 ∪ A2), c′, {S ′
i ∀i ∈ Nt}, SOUN, last_node) where no

other tasks will be assigned to j:

– Remove j from the sets of available machines: S ′
i = Si \ {j} ∀i ∈ Nt.

– Update weights of the recipe-arcs: c′(i, i′) = min
k∈S′

i

{pti,k} ∀(i, i′) ∈ A1.

– Update weights of the schedule-arcs starting from UIS tasks:

c′(i, i′) = min
k∈S′

i

{pti,k} ∀i ∈ NUIS, (i, i
′) ∈ A2.

5. Return the set of child nodes generated in steps 3 and 4.

The optimal solution of the illustrative example has 59 h makespan if all tasks have

UIS, and 87 h if all tasks have NIS. Figure 2.8 shows the schedule-graph (S-graph of a

solution node) of the UIS case. The longest path is highlighted with thicker lines. The

Gantt chart of the corresponding schedule is shown in Figure 2.9. Similarly, the schedule-

graph of the NIS case is shown in Figure 2.10. And its Gantt chart is shown in Figure 2.11,

where the lighter colored blocks illustrate the periods when a machine acts as intermediate

storage.

Figure 2.8: Schedule-graph with UIS tasks

The method explained above can solve makespan minimization problems. To solve

other types of scheduling problems, modifications of the model and/or the algorithm are

necessary. This can be regarded as a disadvantage to MILP models, where a general-

purpose solver can be used for any model, however, it also offers opportunity to develop

algorithms which can take advantage of problem-specific characteristics.

Several extensions and improvements have been proposed for the S-graph frame-

28

2. LITERATURE OVERVIEW OF MODELLING METHODS FOR SCHEDULING

Figure 2.9: Gantt chart with UIS tasks

Figure 2.10: Schedule-graph with NIS tasks

Figure 2.11: Gantt chart with NIS tasks

29

2. LITERATURE OVERVIEW OF MODELLING METHODS FOR SCHEDULING

work. A throughput maximization method was developed [66, 46, 47], which utilizes

the makespan minimization method as a feasibility checker. The S-graph method was

adapted for scheduling problems arising in paint production [2], dairy manufacturing [1],

and routing of railway networks [3]. The approach was also extended with handling of un-

certainty [58] and limited waiting times [43]. My contributions to the S-graph framework

are discussed in Chapters 4 and 6.

30

Chapter 3

Improved MILP models for scheduling

wet-etch stations

In the age of Industry 4.0, automated manufacturing systems are used in more and more

places. A well-studied scheduling problem is involved with such a system used in semi-

conductor manufacturing, the Automated Wet-etch Station (AWS).

The first, most important, and most complex stage of semiconductor manufacturing is

the fabrication process [104]. Wafers made of silicon or gallium arsenide enter this process,

and several layers of integrated circuits are created on its surface through metal deposition,

photolithography, and etching. Wet-etching is a technique to chemically remove material

from the wafer surface through a series of chemical and de-ionizing baths.

Etching operations require strict scheduling [84], as exposing the material to chemi-

cals for too much or not enough time results in damaged products. This constraint is one

reason why AWS scheduling a challenging problem. Another reason is the usage of trans-

portation devices, robots, in the system, and their scarce availability. They are needed to

ensure precise and consistent operation times, and to avoid contamination from human

operators. Transport operations have to be considered when scheduling the processes of

an AWS.

My research on this topic was motivated by the aim of the S-graph research group

to solve this scheduling problem with an extension of the S-graph framework. While

studying the literature MILP methods, I found possible improvements to these models,

which I will present in this chapter.

An S-graph-based approach has also been developed as a joint work with Balázs

Kovács, supervised by Máté Hegyháti and Ferenc Friedler. As it is not entirely my

31

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

own accomplishment, this approach is not detailed in this thesis. My improved MILP

formulations and the S-graph approach were both presented in the paper by Hegyháti et

al. [44].

A formal definition of the problem is given in Section 3.1. A summary of the literature

methods is presented in Section 3.2. My proposed improvements to these models are

shown in Section 3.3. Empirical analysis of the proposed formulations is presented in

Section 3.4.

3.1 Problem definition

Wafers are processed as batches of several wafers held together, called as wafer lots. At

the start, wafer lots are waiting in an input buffer for processing, and they are transferred

to an output buffer at the end of their processing. During their etching process, wafer

lots go through alternating stages of chemical and water (de-ionizing) baths. Chemical

stages have a ZW policy, meaning that lots have to be transferred immediately from the

chemical bath to a water bath after the required etching time has passed. Water stages

have required treatment times, and a less restrictive waiting policy. In some literature

methods, unlimited waiting times are allowed at these stages, while other approaches

consider limited wait times. Wafer lots may differ in the required chemical and water

treatment times, and waiting time limits.

In most literature methods, the stages are considered to operate in a flow-shop manner:

there is on bath on each stage, and every wafer lot goes through the same bath sequence.

With the combination of the lack of intermediate storage, this results in a permutation

flow-shop problem, where the order of the wafer lots is the same on every stage. Other

works in the literature consider more general problem classes, similar to reentrant flexible

job-shops: multiple baths may be present on a stage, wafer lots can differ in the number

and order of stages, and lots may visit the same stage multiple times. Figure 3.1 shows

the differences between the two problem classes.

In addition to constraints on the processing and waiting times, and on the stage se-

quence, a robot must be available to transfer the wafer lot from one stage to the next.

Scheduling the robot movements makes even the relatively simple permutation flow-shop

variant a challenging problem. For this reason, early approaches only considered systems

having a single robot. The generalization to multiple robots allows a more efficient oper-

32

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

(a) Permutation flow-shop AWS

(b) Reentrant flexible job-shop AWS

Figure 3.1: AWS recipe structures

ation of the AWS. In systems where the robots (also called hoists) travel on shared rails,

they may interfere with each other during their movements. Taking this into account in

scheduling would be a very difficult problem, so when multiple robots are present, either

it is assumed that they each have their separate rail allowing independent movement from

other robots, or non-overlapping sections (robot zones) of a shared rail are determined

and assigned to separate robots.

Just as etching times, transfer times are also subject to limited wait policy. In single-

robot systems, there is no advantage for performing a transfer slower than possible, how-

ever with multiple robots, if one robot brings a lot to a bath, and another robot is taking

out a lot from this bath, the first robot may need to wait for the other. This can be

modeled with flexible transfer times, which can vary in the given interval, opposed to

using constant transfer times.

The objective is to minimize the makespan, which includes the transfer of the last wafer

lot to the output buffer. A related problem called the Hoist Scheduling Problem [94] also

33

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

deals with the scheduling of transport equipment but with the objective of maximizing

cyclic throughput. Here, only the makespan minimization problem is considered.

Scheduling an AWS is often done in an online fashion: the next set of lots must be

scheduled so that the schedule of the currently processed set is adhered to. The most

simple solution for this is to include tasks of the previous set of lots in the model, and fix

variables regarding past events.

To summarize, the list of input parameters follows, using the notation of [5]:

I is the set of jobs (wafer lots).

S/Si is the ordered set of stages, whose cardinality depends on job (i) in the flexible

job-shop variant.

Ji,s is the set of baths available for stage (i, s) in the flexible job-shop variant.

R is the set of robots.

Ri,s is the set of robots that can transfer to stage (i, s), if robot zones are used.

tmin
i,s is the minimum required processing time of stage (i, s).

tmax
i,s is the maximum allowed processing time of stage (i, s).

πmin
i,s is the minimum possible transfer time to stage (i, s) from the previous stage of

the job.

πmax
i,s is the maximum allowed transfer time to stage (i, s) from the previous stage of

the job.

πabs
j,j′ is the travel time between baths j and j′.

Hr is the starting position of robot r.

Figure 3.2 illustrates the input data of a reentrant flexible job-shop problem by Aguirre

et al. [5]. There are 3 types of products with 2 batches from each. Their paths through

the stages are shown with minimum and maximum processing times (tmin
i,s , tmax

i,s) above the

stages, and loaded transfer times (πmin
i,s , πmax

i,s) between the stages. Unloaded travel times

(πabs
j,j′) between consecutive baths are shown at the top (for non-consecutive baths, the

distance is the sum of the distances in-between). All times are given in minutes. There

are 2 robots, r1 has the zone j0− j7, and r2 covers j7− j37.

The optimal solution of the problem is shown by the Gantt chart in Figure 3.3. The

makespan value is 160.05 minutes.

34

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

Figure 3.2: Problem data of the case study by Aguirre et al. [5]

Figure 3.3: Optimal schedule of the case study by Aguirre et al. [5]

35

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

3.2 Literature approaches

The first solution approach was A Tabu Search based heuristic by Geiger et al. [34]. It only

considered a single robot and the permutation flow-shop structure. Later, Bhushan and

Karimi [12] proposed better heuristic algorithms for this problem class, using Simulated

Annealing.

The first exact approach was a time slot MILP model by Bhushan and Karimi [11]. The

authors also proposed a two-step heuristic, RCURM (Robot-Constrained Unlimited Robot

Model), where a model with unlimited robots is solved first, then the job permutation is

fixed and robot movements are scheduled.

A hybrid model was proposed by Castro et al. [15] which combined slot-based and

precedence-based techniques to achieve better performance. The model and its extension

is presented in Section 3.3.2.

Zeballos et al. [106] presented a solution approach based on Constraint Programming

and a search strategy tailored for the investigated problem.

The previously mentioned approaches did not account for the empty movements of the

robots. They assumed that only transfer movements take time and neglected the time

necessary for the robot to go from one transfer to another. Novas et al. [72] pointed out

this problem and proposed a Constraint Programming approach which correctly models

empty robot movements. However, their model is only suitable for scheduling a single

robot.

A precedence-based MILP model was presented by Aguirre et al. [5] which addresses

the empty robot movement problem of earlier MILP models and can also solve the more

general job-shop AWS scheduling problem. The model and its improvement is presented

in Section 3.3.1.

An S-graph-based solution approach was proposed [44] for the flexible job-shop variant.

Transfer times were modeled as changeover times of the robots between their transfer

tasks. Product changeover times of machines had been modeled with S-graphs earlier but

in this case, sequence-dependent changeover was required. This needed an extension to the

branching algorithm to update the arc weights of schedule-arcs based on the baths assigned

to the tasks before and after a transfer. Modeling limited wait times were achieved with

negative-weighted arcs which was also a novel extension to the S-graph framework. As

limited waiting constraints are present in many practical scheduling problems, alternative

modeling techniques for it were also investigated [42] but using negative arcs proved to

36

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

be the best approach.

3.3 Proposed model improvements

In this section, two literature models and my proposed improvements for them are pre-

sented in detail. The first model is the precedence-based approach by Aguirre et al. [5],

for which I proposed a more efficient formulation, as presented in Section 3.3.1. The sec-

ond model is a hybrid method by Castro et al. [15], which I extended to a more general

problem class, shown in Section 3.3.2.

3.3.1 Improving the model by Aguirre et al. (2013)

First, the original model [5] is presented, then my proposed modifications follow. The

model considers the most general, reentrant flexible job-shop problem class.

The tasks are indexed by (i, s) ∀i ∈ I, s ∈ Si lot-stage pairs. The first (s = 1) and last

(s = |Si|) stages are the input and output buffers for each lot, with 0 processing time.

The model contains the following variables:

Tsi,s, Tfi,s ≥ 0 are the start and finish times of tasks

ti,s is the processing time of a task

πload
i,s is the transfer time into a task

πfree
i,s is the empty movement time before transferring into a task

πseq−dep
i,i′,s,s′ is the sequence-dependent transfer time from (i′, s′) to (i, s)

Xi,i′,s,s′ , Yi,i′,s,s′ are the binary precedence variables for tasks and transfers

Ki,i′,s,s′,r is the binary immediate precedence variable for transfers

wi,s,j, qi,s,r are the binary task-bath and transfer-robot assignment variables

Posi,s,r is variable denoting the position of a transfer in the transfer sequence of a robot

MK is the makespan

Xi,i′,s,s′ , Yi,i′,s,s′ are so-called general precedence variables, representing the order of

two tasks. The immediate precedence variable Ki,i′,s,s′,r represents a stricter relationship,

that the two tasks are executed in succession by the same robot.

The objective is to minimize the makespan:

minimizeMK (A:1)

MK ≥ Tsi,|Si| ∀i ∈ I (A:2)

37

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

Every task is assigned to a single bath, and every transfer to a single robot:∑
j∈Ji,s

wi,s,j = 1 ∀i ∈ I, s ∈ Si (A:3)

∑
r∈Ri,s

qi,s,r = 1 ∀i ∈ I, s ∈ Si (A:4)

The difference between finish and start times of a task is set by the processing time,

which is bounded by the given parameters:

Tfi,s = Tsi,s + ti,s ∀i ∈ I, s ∈ Si (A:5)

tmin
i,s ≤ ti,s ≤ tmax

i,s ∀i ∈ I, s ∈ Si (A:6)

The transfer times between subsequent stages are set by the πload
i,s variables:

Tsi,s = Tfi,s−1 + πload
i,s ∀i ∈ I, s ∈ Si : s > 1 (A:7)

πmin
i,s ≥ πload

i,s ≥ πmax
i,s ∀i ∈ I, s ∈ Si (A:8)

Task sequencing is done by the Xi,i′,s,s′ binary precedence variables:

Xi,i′,s,s′ =

1 if task (i, s) is processed after (i′, s′) in the same bath

0 otherwise

∀i, i′ ∈ I, s ∈ Si, s
′ ∈ Si′ : i > i′

(A:9)

Tsi,s ≥ Tfi′,s′ + πload
i,s + πload

i′,s′+1 −M · (3−Xi,i′,s,s′ − wi,s,j − wi′,s′,j)

∀i, i′ ∈ I, s ∈ Si, s
′ ∈ Si′ , j ∈ Ji,s ∩ Ji′,s′ : i > i′, s′ ̸= |Si′ |

(A:10)

Tsi′,s′ ≥ Tfi,s + πload
i′,s′ + πload

i,s+1 −M · (2 +Xi,i′,s,s′ − wi,s,j − wi′,s′,j)

∀i, i′ ∈ I, s ∈ Si, s
′ ∈ Si′ , j ∈ Ji,s ∩ Ji′,s′ : i > i′, s ̸= |Si|

(A:11)

Note that in Constraints (A:10) and (A:11), the transfer times of removing the material

from the bath and the delivery of new material are added together when calculating the

time difference between the 2 tasks. However, if there are multiple robots, these 2 transfers

may be assigned to different robots, which can execute them in parallel. So as Castro

et al. [15] proposed based on an earlier precedence based model [4], for the multiple

robot model, Constraints (A:10) and (A:11) should be replaced by Constraints (Am:12)-

(Am:15).

38

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

Tsi,s ≥ Tfi′,s′ −M · (3−Xi,i′,s,s′ − wi,s,j − wi′,s′,j)

∀i, i′ ∈ I, s ∈ Si, s
′ ∈ Si′ , j ∈ Ji,s ∩ Ji′,s′ : i > i′, s′ ̸= |Si′ |

(Am:12)

Tsi′,s′ ≥ Tfi,s −M · (2 +Xi,i′,s,s′ − wi,s,j − wi′,s′,j)

∀i, i′ ∈ I, s ∈ Si, s
′ ∈ Si′ , j ∈ Ji,s ∩ Ji′,s′ : i > i′, s ̸= |Si|

(Am:13)

Tsi,s ≥ Tfi′,s′ + πload
i,s + πload

i′,s′+1 −M · (3−Xi,i′,s,s′ − wi,s,j − wi′,s′,j)

−M · (2− qi,s,r − qi′,s′+1,r)

∀i, i′ ∈ I,s ∈ Si, s
′ ∈ Si′ , j ∈ Ji,s ∩ Ji′,s′ , r ∈ Ri,s ∩Ri′,s′+1 : i > i′, s′ ̸= |Si′|

(Am:14)

Tsi′,s′ ≥ Tfi,s + πload
i′,s′ + πload

i,s+1 −M · (2 +Xi,i′,s,s′ − wi,s,j − wi′,s′,j)

−M · (2− qi,s+1,r − qi′,s′,r)

∀i, i′ ∈ I,s ∈ Si, s
′ ∈ Si′ , j ∈ Ji,s ∩ Ji′,s′ , r ∈ Ri,s+1 ∩Ri′,s′ : i > i′, s ̸= |Si|

(Am:15)

To schedule the movements of the robots, a sequencing of their transfers needs to

be determined. A robot cannot execute more than one transfer at a time, and needs to

travel from the end of a transfer to the start of the next transfer. The latter time is

represented by the πfree
i,s variable, and the sequencing of transfers is set by the Yi,i′,s,s′

binary precedence variables.

Yi,i′,s,s′ =

1 if (i, s) is transferred after (i′, s′) by the same robot

0 otherwise

∀i, i′ ∈ I, s ∈ Si, s
′ ∈ Si′ : i ≥ i′, (i, s) ̸= (i′, s′)

(A:16)

Tsi,s ≥ Tsi′,s′ + πload
i,s + πfree

i,s −M · (3− Yi,i′,s,s′ − qi,s,r − qi′,s′,r)

∀i, i′ ∈ I, s ∈ Si, s
′ ∈ Si′ , r ∈ Ri,s ∩Ri′,s′ : i ≥ i′, (i, s) ̸= (i′, s′)

(A:17)

Tsi′,s′ ≥ Tsi,s + πload
i′,s′ + πfree

i′,s′ −M · (2 + Yi,i′,s,s′ − qi,s,r − qi′,s′,r)

∀i, i′ ∈ I, s ∈ Si, s
′ ∈ Si′ , r ∈ Ri,s ∩Ri′,s′ : i ≥ i′, (i, s) ̸= (i′, s′)

(A:18)

In [5], the domain of Constraints (A:17) and (A:18) is constricted to i > i′, which is

sufficient, as different stages of a lot are already sequenced by the stage order. However,

broadening the domain of these constraints to the domain of Yi,i′,s,s′ leads to a more

efficient formulation. Without this change, the model performed significantly worse in the

tests than the performance reported in [5]. As later constraints in [5] have the condition

i ≥ i′, (i, s) ̸= (i′, s′), I assumed the above constraints should have the same, and were

39

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

just written mistakenly in the paper.

To set the value of πfree
i,s exactly to the time that the robot requires for traveling from

the end of its previous transfer to the start of transfer (i, s), the authors converted the

general precedence relations into immediate precedence variables. This is done with the

help of Posi,s,r variables, which represent the position of the transfer i, s among all the

transfers done by robot r. Their values are set by Constraints (A:19)-(A:22). If (i, s) is

not transferred by r, the value of Posi,s,r is 0.

Posi,s,r ≥ Posi′,s′,r + 1−M · (3− Yi,i′,s,s′ − qi,s,r − qi′,s′,r)

∀i, i′ ∈ I, s ∈ Si, s
′ ∈ Si′ , r ∈ Ri,s ∩Ri′,s′ : i ≥ i′, (i, s) ̸= (i′, s′)

(A:19)

Posi′,s′,r ≥ Posi,s,r + 1−M · (2 + Yi,i′,s,s′ − qi,s,r − qi′,s′,r)

∀i, i′ ∈ I, s ∈ Si, s
′ ∈ Si′ , r ∈ Ri,s ∩Ri′,s′ : i ≥ i′, (i, s) ̸= (i′, s′)

(A:20)

Posi,s,r ≤
∑
i′∈I

∑
s′∈Si′ :
r∈Ri′,s′

qi′,s′,r ∀i ∈ I, s ∈ Si, r ∈ Ri,s (A:21)

qi,s,r ≤ Posi,s,r ≤ M · qi,s,r ∀i ∈ I, s ∈ Si, r ∈ Ri,s (A:22)

Then, the auxiliary variable, Ki,i′,s,s′,r is set to 0 if (i, s) is the next transfer of r after

(i′, s′):

Ki,i′,s,s′,r = Posi,s,r − Posi′,s′,r − 1 +M · (3− Yi,i′,s,s′ − qi,s,r − qi′,s′,r)

∀i, i′ ∈ I, s ∈ Si, s
′ ∈ Si′ , r ∈ Ri,s ∩Ri′,s′ : i ≥ i′, (i, s) ̸= (i′, s′)

(A:23)

Ki′,i,s′,s,r = Posi′,s′,r − Posi,s,r − 1 +M · (2 + Yi,i′,s,s′ − qi,s,r − qi′,s′,r)

∀i, i′ ∈ I, s ∈ Si, s
′ ∈ Si′ , r ∈ Ri,s ∩Ri′,s′ : i ≥ i′, (i, s) ̸= (i′, s′)

(A:24)

The sequence-dependent unloaded travel time (πseq−dep
i,i′,s,s′) is set by Constraint (A:25),

based on the baths assigned to the respective tasks. In [5] this constraint is not defined

for s = 1, the case where the robot moves to the input buffer. My tests showed that this

would lead to infeasible solutions by allowing the robot to travel to the input buffer in

an instant. Without setting the distance as a lower bound for πseq−dep
i,i′,1,s′ , it becomes 0, and

so does πfree
i,1 , the unloaded travel time before (i, 1). While stage s = 1 does not have an

actual transfer from an earlier stage (the transfer time is 0), the robot must travel back

to the input buffer. As the order of transfers is (i′, s′), (i, 1), (i, 2), there is no immediate

precedence between (i′, s′) and (i, 2), so the distance is not set there either. I assume this

was an editorial mistake in the article [5], as the reported solutions are correct, so the

40

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

model must have included a constraint for the s = 1 case as well. As s− 1 would be out

of bounds in this case, I extended the Constraint (A:25) to s = 1 in Constraint (A:26) by

using wi,1,j in place of wi,s−1,j, as there is no previous stage for the first stage.

πseq−dep
i,i′,s,s′ ≥ πabs

j′,j −M · (2− wi,s−1,j − wi′,s′,j′)

∀i, i′ ∈ I, s ∈ Si, s
′ ∈ Si′ , j ∈ Ji,s, j

′ ∈ Ji′,s′ : s > 1, (i, s) ̸= (i′, s′)
(A:25)

πseq−dep
i,i′,1,s′ ≥ πabs

j′,j −M · (2− wi,1,j − wi′,s′,j′)

∀i, i′ ∈ I, s′ ∈ Si′ , j ∈ Ji,1, j
′ ∈ Ji′,s′ : (i, 1) ̸= (i′, s′)

(A:26)

In Constraint (A:27), the value of πseq−dep
i,i′,s,s′ is used as a lower bound for πfree

i,s when

(i′, s′) is the previous transfer (when Ki,i′,s,s′,r = 0).

πfree
i,s ≥ πseq−dep

i,i′,s,s′ −M ·Ki,i′,s,s′,r −M · (2− qi,s,r − qi′,s′,r)

∀i, i′ ∈ I, s ∈ Si, s
′ ∈ Si′ , r ∈ Ri,s ∩Ri′,s′ : (i, s) ̸= (i′, s′)

(A:27)

And finally, to handle the starting position (Hr) of each robot, Constraint (A:28) is

used to set the unloaded travel time before the first transfer of a robot:

πfree
i,s ≥ πabs

Hr,j −M · (Posi,s,r − 1)−M · (2− qi,s,r − wi,s−1,j)

∀i ∈ I, s ∈ Si, j ∈ Ji,s−1, r ∈ Ri,s : s > 1
(A:28)

However, like with the Constraints (A:10)-(A:11), there is also a problem with Con-

straint (A:28) if multiple robots are allowed for the same transfer, i.e., robot zones are

not disjoint. In this case, Posi,s,r and qi,s,r both equal to 0 for the unassigned robot, ac-

tivating the constraint for not just the first transfers of the robots but for other transfers

as well. There is no simple solution for this, as the constraint should be activated when

Posi,s,r = 1 but not when it is lower or greater than 1. It needs additional binary variables

indicating whether a transfer is the first transfer of a robot. My proposed formulation

resolves this issue too.

Improved formulation

The idea behind my improved model is the following: if the transfer to (i, s) is preceded

by the transfer to (i′, s′), and both are assigned to the same robot, their time difference

must be at least the unloaded travel time between the baths assigned to (i′, s′) and

(i, s − 1). Even if the robot carries out other transfers between these two, that cannot

decrease the travel time. This statement holds assuming that travel times between baths

41

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

satisfy the triangle inequality, and loaded transfer times are not lower than unloaded

travel times, which are reasonable assumptions in these manufacturing systems. The

motivating example given in [5] more than satisfies these assumptions: the unloaded

robot travel speeds are much higher than loaded speeds.

In the improved model, Constraints (A:17)-(A:28) are replaced with (A*:29)-(A*:31).

Also, all πfree
i,s , Posi,s,r, Ki,i′,s,s′,r, and πseq−dep

i,i′,s,s′ variables are removed, and the domain of

Yi,i′,s,s′ is reduced to ∀i, i′ ∈ I, s ∈ Si, s
′ ∈ Si′ : i > i′.

Tsi,s ≥ Tsi′,s′ + πload
i,s + πabs

j′,j −M · (1− Yi,i′,s,s′)

−M · (2− wi,s−1,j − wi′,s′,j′)−M · (2− qi,s,r − qi′,s′,r)

∀i, i′ ∈ I, s ∈ Si,s
′ ∈ Si′ , j ∈ Ji,s−1, j

′ ∈ Ji′,s′ , r ∈ Ri,s ∩Ri′,s′ : i > i′, s > 1

(A*:29)

Tsi′,s′ ≥ Tsi,s + πload
i′,s′ + πabs

j,j′ −M · Yi,i′,s,s′

−M · (2− wi,s,j − wi′,s′−1,j′)−M · (2− qi,s,r − qi′,s′,r)

∀i, i′ ∈ I, s ∈ Si,s
′ ∈ Si′ , j ∈ Ji,s, j

′ ∈ Ji′,s′−1, r ∈ Ri,s ∩Ri′,s′ : i > i′, s′ > 1

(A*:30)

Tsi,s ≥ πload
i,s + πabs

Hr,j −M · (2− qi,s,r − wi,s−1,j)

∀i ∈ I, s ∈ Si, j ∈ Ji,s−1, r ∈ Ri,s : s > 1
(A*:31)

4 model variants have been presented above. Table 3.1 shows which constraints make

up which models. The original model presented by [5] will be referred to as model A. The

version which allows parallel input-output transfers in multi-robot systems, as suggested

in [15], will be called Am. My improved variants of these models will be denoted by A*

and Am*.

Table 3.1: Constraints contained in the 4 models

Constraints A Am A* Am*

(A:1)-(A:8) X X X X
(A:10)-(A:11) X X
(Am:12)-(Am:15) X X
(A:17)-(A:28) X X
(A*:29)-(A*:31) X X

3.3.2 Extending the model by Castro et al. (2012)

This model [15] addresses the less general permutation flow-shop variant but takes ad-

vantage of this to achieve a better performance. This motivated me to extend this model

42

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

to consider empty robot movements, robot zones, limited wait times, and flexible transfer

times that were introduced in [5]. Here, the original model (with some notational changes)

and my extended model is presented.

In the considered problem class, there is only a single bath at each stage, so S = J1. In

the original model, the set of stages (S) is partitioned into chemical (ZW = 1, 3, . . . , |S|−

2) and water (LS = 2, 4, . . . , |S|−1) stages, and the output buffer, which is the last stage

(|S|) with 0 processing time. The former has no wait time (tmin
i,s = tmax

i,s), and the latter

has unlimited wait time (tmax
i,s = ∞), so pi,s is used to denote the processing time on all

stages. Constant, lot-independent transfer times are assumed: πmin
i,s = πmax

i′,s ∀i, i′ ∈ I, so

they are denoted by πs.

The permutation flow-shop variant is considered, where every wafer lot goes through

the same bath sequence. With no multiple identical baths, no intermediate storage, and

no reentrant flow, the order of the wafer lots will be the same at every stage. This

order is represented using time slots. The set of time slots, T , has the same size as

the set of lots (|T | = |I|). A pairing of lots and time slots are set by binary variables

Ni,t ∈ {0, 1} ∀i ∈ I, t ∈ T . If Ni,t = 1, lot i will be the t-th lot in the processing order.

The start time of the t-th lot at stage s is set by non-negative continuous variables Tt,s,

and if it is a water stage (s ∈ LS), Tet,s ≥ 0 sets the end time of its processing. Another

non-negative continuous variable, MS, represents the makespan, which is minimized:

minimizeMS (C:1)

This technique is called the unit-specific time slot formulation, where time slots have

a different start time in each equipment unit. Normally, this would require task-slot

assignments, not job-slot assignments, but because the job order is the same at each

stage, the assignment variable does not need a stage index.

There are separate constraints for the timing of chemical and water stages. For chem-

ical stages, Constraint (C:2) ensures that the required processing time is passed before

the next lot is started to be processed. And Constraint (C:3) ensures that the lot is

immediately transferred to its next stage after it was processed. Constraint (C:4) sets the

1As stages and machines can be used interchangeably, stage index is used here instead of bath index,
to make the notation more similar to the previous model.

43

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

first stage of the first lot to start after it is transferred from the input buffer.

Tt+1,s ≥ Tt,s +
∑
i∈I

Ni,tpi,s ∀t ∈ T, s ∈ ZW : t ̸= |T | (C:2)

Tt,s+1 = Tt,s +
∑
i∈I

Ni,tpi,s + πs+1 ∀t ∈ T, s ∈ ZW : t ̸= |T | (C:3)

T1,1 ≥ π1 (C:4)

For water stages, Constraint (C:5) ensures that there is no overlap between the process-

ing of two subsequent lots. The required processing time is ensured by Constraint (C:6),

and the transfer time is set by Constraint (C:7).

Tt+1,s ≥ Tet,s ∀t ∈ T, s ∈ LS : t ̸= |T | (C:5)

Tet,s ≥ Tt,s +
∑
i∈I

Ni,tpi,s ∀t ∈ T, s ∈ LS (C:6)

Tt,s+1 = Tet,s + πs+1 ∀t ∈ T, s ∈ LS (C:7)

To consider flexible transfer times and LW policy, I replaced the Constraints (C:2)-

(C:7)) with (C:8)-(C:13). The domain of Tet,s is extended to all stages to handle the LW

policy.

Tet,s ≥ Tt,s +
∑
i∈I

Ni,tt
min
i,s ∀t ∈ T, s ∈ S (C:8)

Tet,s ≤ Tt,s +
∑
i∈I

Ni,tt
max
i,s ∀t ∈ T, s ∈ S (C:9)

Tt+1,s ≥ Tet,s ∀t ∈ T, s ∈ S : t ̸= |T | (C:10)

Tt,s+1 ≥ Tet,s + πmin
s+1 ∀t ∈ T, s ∈ S : s ̸= |S| (C:11)

Tt,s+1 ≤ Tet,s + πmax
s+1 ∀t ∈ T, s ∈ S : s ̸= |S| (C:12)

T1,1 ≥ πmin
1 (C:13)

The pairing between lots and time slots is set by Constraints (C:14) and (C:15).

Makespan is lower bounded in Constraint (C:16) by the last lot arriving at the output

buffer, and Constraint (C:17) is added for more efficiency by connecting the other slot

start time variables with the makespan. In my extended model, Constraint (C:17) is

replaced by (C*:18).

44

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

∑
t∈T

Ni,t = 1 ∀i ∈ I (C:14)

∑
i∈I

Ni,t = 1 ∀t ∈ T (C:15)

T|T |,|S| ≤ MS (C:16)

Tt,s +
∑
i∈I

Ni,t ·
∑
s′∈S:

s≤s′≤|S|

(pi,s′ + πi,s′) ≤ MS ∀t ∈ T, s ∈ S : s ̸= |S| (C:17)

Tt,s +
∑
i∈I

Ni,t ·
∑
s′∈S:

s≤s′≤|S|

(tmin
i,s′ + πmin

i,s′) ≤ MS ∀t ∈ T, s ∈ S : s ̸= |S| (C*:18)

The above constraints make up the URM (Unlimited Robot Model) which is used

in the first step of the RCURM heuristic. To account for the limited availability of the

robots, additional variables and constraints are needed.

The sequencing of transfer tasks are done with general precedence variables:

Ȳt,s,t′,s′ =

1 if slot t at stage s starts later than slot t′ at s′

0 otherwise

∀t, t′ ∈ T, s, s′ ∈ S : t < t′, s ̸= s′

(C:19)

When there are multiple robots (MRM), an assignment variable, W̄t,s,r, is also needed

to select which robot performs each transfer. Constraint (C:20) ensures that a single robot

is selected for each. If the same robot that removes a lot from a bath transports the next

lot into it, the big-M Constraints (C:21) and (C:22) ensure that there is enough time for

both transfers. For transfers of different stages assigned to the same robot, Constraints

(C:23) and (C:24) ensure that the one of the two transfers has precedence, and the other

is executed after it.

∑
r∈R

W̄t,s,r = 1 ∀t ∈ T, s ∈ S (C:20)

Tt+1,s ≥ Tt,s +
∑
i∈I

Ni,tpi,s + πs+1 + πs −M · (2− W̄t+1,s,r − W̄t,s+1,r)

∀t ∈ T, s ∈ ZW, r ∈ R : t ̸= |T |
(C:21)

45

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

Tt+1,s ≥ Tet,s + πs+1 + πs −M · (2− W̄t+1,s,r − W̄t,s+1,r)

∀t ∈ T, s ∈ LS, r ∈ R : t ̸= |T |
(C:22)

Tt,s ≥ Tt′,s′ + πs −M · (3− Ȳt,s,t′,s′ − W̄t,s,r − W̄t′,s′,r)

∀t, t′ ∈ T, s, s′ ∈ S, r ∈ R : t < t′, s ̸= s′
(C:23)

Tt′,s′ ≥ Tt,s + πs′ −M · (2 + Ȳt,s,t′,s′ − W̄t,s,r − W̄t′,s′,r)

∀t, t′ ∈ T, s, s′ ∈ S, r ∈ R : t < t′, s ̸= s′
(C:24)

The problem with Constraints (C:21)-(C:24) is that they do not ensure that the robot

has enough time to travel from the endpoint of a transfer to the starting point of the next

transfer. To fix this, I replaced these constraints with (C*:25)-(C*:27). To handle robot

zones, only robots that are allowed for both transfers, are considered: Rs is the set of

robots that can transfer to stage S (similarly to Ri,s used before, but here the stages are

the same for each lot).

Tt+1,s ≥ Tet,s + πmin
s+1 + πmin

s + πabs
s−1,s+1 −M · (2− W̄t+1,s,r − W̄t,s+1,r)

∀t ∈ T, s ∈ S, r ∈ Rs ∪Rs+1 : s ̸= |S|, t ̸= |T |
(C*:25)

Tt,s ≥ Tt′,s′ + πmin
s + πabs

s′,s−1 −M · (3− Ȳt,s,t′,s′ − W̄t,s,r − W̄t′,s′,r)

∀t, t′ ∈ T, s, s′ ∈ S, r ∈ Rs ∪Rs′ : t < t′, s ̸= s′
(C*:26)

Tt′,s′ ≥ Tt,s + πmin
s′ + πabs

s,s′−1 −M · (2 + Ȳt,s,t′,s′ − W̄t,s,r − W̄t′,s′,r)

∀t, t′ ∈ T, s, s′ ∈ S,∈ Rs ∪Rs′ : t < t′, s ̸= s′
(C*:27)

With these additional constraints, the model is capable to schedule a finite number

of robots. While that includes the single-robot case, the model can be formulated more

efficiently for this special case (ORM). Not only the big-M parts associated with robot

assignment can be removed, the domain of Ȳ can be reduced [15]. This is presented here

only on the extended model.

Equation (C:28) computes the lower bound of the position of transfer t, s, based on

the fact that earlier lots will precede it at earlier stages, and they need to be transferred to

subsequent stages. The upper bound is calculated similarly from the end of the sequence

by Equation (C:29). Using these bounds, the value of Ȳt,s,t′,s′ can be fixed for certain pairs

of transfers by Constraints (C:30) and (C:31). Constraints (C*:26)-(C*:27) are replaced in

the ORM by Constraints (C*:32)-(C*:33), which are only defined for pairs where Ȳt,s,t′,s′

is not fixed to a value which would deactivate the constraint through the big-M term.

46

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

And by removing the robot assignment, Constraint (C*:25) is replaced by (C*:34).

LBt,s =
∑
t′∈T :
t′≤t

∑
s′∈S:

s′≤s+t−t′

1 ∀s ∈ S, t ∈ T (C:28)

UBt,s = |I| · |S|+ 1−
∑
t′∈T :
t′≥t

∑
s′∈S:

s′≥s+t−t′

1 ∀s ∈ S, t ∈ T (C:29)

Ȳt,s,t′,s′ = 0 ∀t, t′ ∈ T, s, s′ ∈ S : t < t′, s ̸= s′, UBt,s ≤ LBt′,s′ (C:30)

Ȳt,s,t′,s′ = 1 ∀t, t′ ∈ T, s, s′ ∈ S : t < t′, s ̸= s′, UBt′,s′ ≤ LBt,s (C:31)

Tt,s ≥ Tt′,s′ + πmin
s + πabs

s′,s−1 −M · Ȳt,s,t′,s′

∀t, t′ ∈ T, s, s′ ∈ S : t < t′, s ̸= s′, UBt,s > LBt′,s′

(C*:32)

Tt′,s′ ≥ Tt,s + πmin
s′ + πabs

s,s′−1 −M · (2 + Ȳt,s,t′,s′)

∀t, t′ ∈ T, s, s′ ∈ S : t < t′, s ̸= s′, UBt′,s′ > LBt,s

(C*:33)

Tt+1,s ≥ Tet,s + πmin
s+1 + πmin

s + πabs
s−1,s+1

∀t ∈ T, s ∈ S : s ̸= |S|, t ̸= |T |
(C*:34)

3.4 Computational tests

To measure the performance improvement of the precedence-based model, and validate

the correctness of the extension for the hybrid time slot model, I implemented the models,

and compared them on problems taken from the literature. The tests ran on a laptop with

an Intel i7-8750H 6-core 2.20 GHz CPU, 16 GB RAM, using Gurobi 9.1, with a 1000 s

solution time limit.

For the reentrant flexible job-shop problem class, I used the case study by Aguirre et

al. [5], shown in Figure 3.2. I tested both the single-robot and 2-robot scenarios, using

robot zones for the latter, as defined in [5]. The results are shown in Table 3.2.

In these tests, my proposed models (A*, Am*) highly outperformed the literature

models. The obtained makespan values are the same as reported by Aguirre et al. [5].

All model variants obtained the same makespan for both instances. Because of the robot

zones, the robots may only meet at one stage, so multi-robot models do not have much

advantage even if 2 robots are present.

47

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

Table 3.2: Test results for the case study by Aguirre et al. [5]

CPU time (s)
|R| A Am A* Am* Makespan

1 453.75 796.27 10 5.47 161.2
2 66.06 73.12 2.63 3.04 160.05

For the permutation flow-shop problem-class, I used instances based on the 25-lot,

12-bath problem from [12]. This example was used for benchmark by many in the litera-

ture [4, 15, 72] by taking the first M stages of the first N jobs to get instances of different

sizes.

Table 3.3 shows the solution times of the different models. The original model by

Castro et al. [15] is denoted by C, and my extended version of the model by C*. Similarly

to the results for the more general problem, my improved versions (A*, Am*) of the

precedence-based models performed much better than the originals. However, for this

special problem class, the hybrid time slot model performed even better which supports

its extension for further problem features.

Table 3.3: Solution times (s) for permutation flow-shop problems with 1 robot

MxN A Am A* Am* C C*

4x4 1.03 2.28 0.13 0.12 0.031 0.02
4x5 7.52 9.55 0.23 0.25 0.081 0.04
4x6 26.32 29.64 0.56 0.56 0.151 0.12
4x7 101.21 152.37 1.26 1.26 0.251 0.21
4x9 – – 15.10 15.05 1.051 0.74
4x11 – – 728.37 715.39 5.361 4.74

6x4 9.54 9.95 0.27 0.27 0.041 0.06
6x5 35.93 29.20 0.75 0.78 0.061 0.10
6x7 – – 5.95 5.94 0.531 0.44
6x9 – – 81.54 81.51 2.091 1.75

8x5 83.40 165.33 1.83 1.85 0.211 0.15
8x7 – – 11.42 9.56 0.931 1.02

10x7 5.35 – 20.82 20.53 1.791 1.53
10x9 0.40 – 319.31 318.80 8.141 183.12

12x5 – – 5.83 5.85 0.501 0.46
12x7 – – 32.91 32.85 2.441 8.19
1 : Empty robot movement not considered.
– : Terminated after 1000 s.

As it can be seen in Table 3.4, the original model (C) provided practically infeasible

48

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

schedules by neglecting the empty robot movements. Considering the empty movements

led to higher solution times, especially when the number of stages (M) was higher (10,

12), the C* model still has a better performance than the precedence-based models.

Table 3.4: Makespan for permutation flow-shop problems with 1 robot

MxN A Am A* Am* C C*

4x4 51.76 51.76 51.76 51.76 50.671 51.76
4x5 63.42 63.42 63.42 63.42 62.001 63.42
4x6 70.92 70.92 70.92 70.92 69.151 70.92
4x7 78.38 78.38 78.38 78.38 76.181 78.38
4x9 97.782 94.082 93.54 93.54 90.681 93.54
4x11 – 133.402 112.30 112.30 108.811 112.30

6x4 62.03 62.03 62.03 62.03 61.081 62.03
6x5 73.69 73.69 73.69 73.69 72.411 73.69
6x7 93.472 – 93.47 93.47 90.831 93.47
6x9 – – 108.15 108.15 104.651 108.15

8x5 93.04 93.04 93.04 93.04 91.921 93.04
8x7 – – 109.38 109.38 106.551 109.38

10x7 – – 125.61 125.61 122.451 125.61
10x9 – – 146.67 146.67 141.571 146.67

12x5 130.162 – 130.16 130.16 128.901 130.16
12x7 – – 144.58 144.58 142.661 144.58
1 : Empty robot movement not considered.
2 : Incumbent solution value after 1000 s.
– : No solution found in 1000 s.

Solution times for the 2 robot scenario are shown in Table 3.5. Robot zones were not

used, which makes the problem more difficult, as both robots are available for all transfers.

The performance ranking is similar to the single robot scenario. The obtained makespan

values shown in Table 3.6 give some additional insight about the models. It can be seen

that models A and A* provide suboptimal solutions for the multi-robot problems, so the

fixed constraints proposed by [15] are necessary. However, the fixed version of the original

precedence-based model (Am) still provided suboptimal solutions in some cases (4x4 and

6x4) because of the issue with Constraint (A:28) discussed earlier, and also provided an

infeasible solution in one case (4x7) due to numerical instability.

I investigated the cause of the numerical instability. The model definition of [5] did not

specified if the variables K and Pos should be defined as integer or continuous variables.

I used continuous variables in the tests reported here which caused numerical instability

for instance 4x7 with big-M values of 256, 512, or 1024. Here, K7,1,1,3,1 = 0.00029296875

49

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

was obtained instead of 0. This variable is multiplied by M in Constraint (A:27) which

resulted in pifree7,1 being lower-bounded by 0 instead of piabs7,1,1,3, whose value is 0.3. If integer

variables are used, the solver cannot find a solution in 1 hour. My improved model (Am*)

does not have that issue, as it does not contain K and Pos variables.

Table 3.5: Solution times (s) for permutation flow-shop problems with 2 robots

MxN A Am A* Am* C C*

4x4 16.11 12.71 0.07 0.09 0.111 0.05
4x5 31.12 32.47 0.35 0.48 0.211 0.15
4x6 76.86 190.02 1.26 1.40 0.551 0.37
4x7 315.36 830.64 4.77 8.17 1.051 1.15
4x9 – – – 41.22 3.001 2.87
4x11 – – – – 25.821 40.41

6x4 17.42 41.08 0.20 0.25 0.101 0.15
6x5 68.21 95.42 1.03 0.83 0.361 0.38
6x7 – – 8.47 7.01 2.771 3.05
6x9 – – 160.52 64.22 6.731 8.06

8x5 325.46 – 2.45 2.60 0.681 0.68
8x7 – – 16.25 15.91 6.261 5.59

10x7 – – 23.07 22.56 3.401 7.52
10x9 – – 238.72 176.36 26.881 35.87

12x5 – – 9.92 7.73 0.971 2.23
12x7 – – 45.32 44.75 16.131 15.45
1 : Empty robot movement not considered.
– : Terminated after 1000 s.

50

3. IMPROVED MILP MODELS FOR SCHEDULING WET-ETCH STATIONS

Table 3.6: Solution times (s) for permutation flow-shop problems with 2 robots

MxN A Am A* Am* C C*

4x4 50.673 49.783 50.673 49.58 49.581 49.58
4x5 62.003 60.58 62.003 60.58 60.581 60.58
4x6 69.153 67.38 69.153 67.38 67.381 67.38
4x7 76.183 74.314 76.363 74.84 73.981 74.84
4x9 – – 91.052 87.98 87.781 87.98
4x11 – – 109.262 106.08 105.281 106.08

6x4 61.083 60.433 61.083 60.15 60.151 60.15
6x5 72.413 71.15 72.413 71.15 71.151 71.15
6x7 91.072,3 – 91.073 88.75 88.751 88.75
6x9 – – 104.893 102.25 101.981 102.25

8x5 91.923 91.172 91.922 90.82 90.821 90.82
8x7 – – 106.903 105.22 104.521 105.22

10x7 – – 122.453 120.61 120.611 120.61
10x9 – – 141.843 139.01 139.011 139.01

12x5 – – 128.903 127.64 127.641 127.64
12x7 – – 142.663 140.74 140.741 140.74
1 : Empty robot movement not considered.
2 : Incumbent solution value after 1000 s.
3 : Suboptimal solution.
4 : Infeasible due to numerical instability.
– : No solution found in 1000 s.

3.5 Summarizing statements

Thesis statement 1 I have developed improvements to existing MILP models for schedul-

ing automated wet-etch stations and other automated manufacturing systems, accelerating

the more general model by orders of magnitude, and extending the solvable problem class

of the more specialized model.

Thesis statement 1/a I have improved the performance of the model by Aguirre et al.

(2013) by developing new constraints for modeling empty robot movement without requiring

immediate precedence variables.

Thesis statement 1/b I have extended the model by Castro et al. (2012) to be able

to handle empty robot movements, robot zones, limited wait times, and flexible transfer

times, and validated its correctness on literature problem instances.

My publications related to the statement: [44] and presentations [41, 77]

51

Chapter 4

S-graph approach for RCPSP and its

variants

The Resource-Constrained Project Scheduling Problem (RCPSP) originated from project

management sciences, however, it has also been used for modeling several industrial pro-

cesses, such as CNC machining [87], plastic injection molding [82], and complex construc-

tion projects [108]. It is a more general problem class than most machine scheduling

problems, as it allows a task to require varying amounts from multiple types of resources

for its execution. These resources have limited but renewable capacities. Tasks consume

them at their start, and return them at their completion. Therefore, tasks must be sched-

uled such that the cumulative resource needs of tasks executed in parallel do not exceed

the capacity of any resource at any moment. Renewable resources can be anything from

machines, workers, and tools, to limited physical locations at a construction site.

The RCPSP has several variants, and different approaches have been proposed for solv-

ing them. I extended the S-graph framework with new algorithms to solve some RCPSP

variants. The problem classes are defined in Section 4.1. A summary of the literature

approaches are presented in Section 4.2. My proposed solution method is explained in

Section 4.3, and the results of computational tests are discussed in Section 4.4.

4.1 Problem definitions

There are many variants of the RCPSP [38, 39], here, only those are introduced which I

investigated for potential extensions of the S-graph framework.

The input data of the classic RCPSP are the following:

53

4. S-GRAPH APPROACH FOR RCPSP AND ITS VARIANTS

T is the set of tasks (also called as activities).

H is the set of precedence relations. (H ⊂ T × T)

R is the set of resources.

di are the task durations. (∀i ∈ T)

bk are the resource capacities. (∀k ∈ R)

ri,k are the resource usages of tasks. (∀i ∈ T, k ∈ R)

The goal is to provide a schedule with minimal completion time, that satisfies the

precedence and resource constraints. That means determining the start time of each task,

si ≥ 0, such that:

minimizemax
i∈T

(si + di) (4.1)

Any task can only start after all of its predecessors are finished:

si′ ≥ si + di ∀(i, i′) ∈ H (4.2)

At any moment, the total resource usages of the tasks in progress do not exceed their

respective capacities: ∑
∀i∈T : si≤t<si+di

ri,k ≤ bk ∀k ∈ R, t ∈ R (4.3)

The multi-mode variant (MRCPSP) is an important extension of the classic problem.

It allows tasks to have multiple alternative operation modes, that can differ in resource

usage and duration. For example, a task may be done faster using more resources, or

conversely, extended over a longer time period while saving resources.

While in the single-mode problem, the total resource usage of all the tasks is indepen-

dent of the schedule, in the multi-mode problem, it depends on the chosen operation modes

of the tasks. This makes it possible to define resource capacities not just for momentary

usages but for the entire project. This is useful for modeling the limited availability of

non-renewable resources, such as raw materials. While renewable resources are consumed

at the start of a task and released at its end, non-renewable resources are only consumed

and never get regenerated. This means that the capacities of non-renewable resources

limit the total consumption, and render some operation mode assignments infeasible,

regardless of the timing decisions.

The input data of the MRCPSP are the following:

T is the set of tasks (also called activities).

H is the set of precedence relations. (H ⊂ T × T)

54

4. S-GRAPH APPROACH FOR RCPSP AND ITS VARIANTS

RR is the set of renewable resources.

RN is the set of non-renewable resources.

Mi are the sets of possible operation modes of tasks. (∀i ∈ T)

di,m are the task durations. (∀i ∈ T,m ∈ Mi)

bk are the resource capacities. (∀k ∈ RR ∪RN)

ri,m,k are the resource usages of tasks. (∀i ∈ T,m ∈ Mi, k ∈ RR ∪RN)

For the MRCPSP, in addition to the start times, a single operation mode, mi ∈ Mi,

must be chosen for each task (∀i ∈ T). Resource usages are dependent on the mode

selection, so renewable resource constraints are modified this way:∑
∀i∈T : si≤t<si+di,mi

ri,mi,k ≤ bk ∀k ∈ RR, t ∈ R (4.4)

And non-renewable resource constraints must be satisfied too:

bk ≥
∑
i∈T

ri,mi,k ∀k ∈ RN (4.5)

Another generalization of the problem introduces time-varying resource capacities.

While the classic problems assume that every resource is available all the time, this

variant allows the modeling of planned changes in resource availability. For example,

external specialists may only be present for a limited time during a project, or different

work shifts have different number of workers. In this variant, renewable resource capacities

are given as piecewise constant functions over time. This extension can be applied to both

single- and multi-mode problems.

4.2 Literature approaches

A discrete time point MILP model for the RCPSP was first introduced by Pritsker et

al. [86], then it was extended to the multi-mode case by Talbot [96]. The discrete time

formulation provides a simple way for constraining the cumulative resource usages of all

active tasks at a time point from exceeding the resource capacities. However, as it was

discussed in Section 2.2, the high number of binary variables makes this type of model

computationally inefficient, and can also lead to suboptimal schedules if durations are not

multiples of the interval length.

Olaguíbel and Goerlich [73] proposed a continuous time model for the single-mode

problem, where the start time of each task is set by a continuous variable. This method

55

4. S-GRAPH APPROACH FOR RCPSP AND ITS VARIANTS

makes resource balance constraints impossible, so resource constraints are ensured by

defining incompatible sets of tasks, whose parallel execution is infeasible, so it must be

avoided with sequencing decisions. As my S-graph approach is based on the same idea,

it will be explained in more detail in Section 4.3.

Kyriakidis et al. [57] proposed a multi-mode model based on variable-length time slots

and the Resource-Task Network (RTN) [83] resource representation method. The timing

of the time slots are set by continuous duration variables, so the start time of a slot can be

calculated by summing the durations of previous time slots. However, they do not need

to be calculated, as precedences are modeled with RTN as production and consumption

of virtual resources. 2 sets of binary variables represent whether an activity starts at the

start of a time slot, or is in progress during a later time slot. These are used to constrain

the lengths of the time slots to be long enough for executing their assigned tasks. Another

set of binary variables handles operation mode selection. With the introduction of virtual

resources for each precedence relation, the number of variables increase steeply with the

number of tasks, so this model proved to be inefficient.

The event-based formulations by Koné et al. [54] for RCPSP were extended to the

multi-mode variant by Chakrabortty et al. [17]. The events used in these models are

similar to the starting points of the time slots mentioned above, but the continuous

variables set the times of the events, not the lengths of the time slots. The binary

assignment variables have 3 indices: task, operation mode, and event. Based on the types

of events considered, two different models are defined. In the Start-Stop Event (SEE)

model, 2 types of variables are used to assign starts and ends of tasks to events. In the

On/Off Event (OOE) model, there is only one type of binary variable, which denotes

whether a task is active at a certain event. Precedence relations are modeled without

additional variables by taking advantage of the ordered events: a task can only start or

be active at an event, if all of its predecessors have been finished at earlier events. This

results in an efficient formulation, especially with the OOE model.

The problem variant with time-varying resource capacities attracted less attention in

the literature, and most approaches only consider the single-mode case [9, 23, 50, 37].

Cheng et al. [19] developed a precedence tree-based branch-and-bound algorithm to solve

the multi-mode case with also allowing non-preemptive activity splitting (tasks can only

be paused due to lack of resources). Kreter et al. [56] further generalized the constraints

for activity splitting with time-bounded breaks and resources remaining engaged dur-

56

4. S-GRAPH APPROACH FOR RCPSP AND ITS VARIANTS

ing breaks. The authors proposed 3 types of binary linear models, and heuristic search

procedures for optimization.

4.3 Proposed S-graph solution method

One way to ensure that resource constraints are satisfied is to identify the groups of tasks

whose parallel execution would violate them, and introduce precedence relations among

them. Such task groups are called incompatible sets [73], and it is enough to find the

minimal sets with that property, so they will be referred to as MRISs (Minimal Resource

Incompatible Sets).

I developed a new branching procedure for the S-graph framework, which uses MRISs

to solve the RCPSP. This is presented in Section 4.3.1, its extension to the multi-mode

variant in Section 4.3.2, and to time-varying resource capacities in Section 4.3.3.

4.3.1 Solution for the single-mode problem

The proposed solution procedure starts with finding all MRIS, then resolves incompati-

bilities in the branching step of the B&B algorithm by making sequencing decisions.

To find the MRISs, I created a Constraint Programming (CP) model of a satisfaction

problem, whose solutions are the MRISs. A CP solver can be used to find all feasible

solutions, thereby providing the set of all MRISs. xi ∈ {0, 1} ∀i ∈ T denotes whether a

task is a member of the set. uk ≥ 0 ∀k ∈ R is the total resource usage of the set, set by

Equation (4.1). vk ∈ {0, 1} ∀k ∈ R denotes whether the capacity constraint of a resource

is violated, set by Constraint (4.2). Constraint (4.3) requires that at least one resource

capacity is violated, so the set is incompatible. Constraint (4.4) ensures that the set is

minimal, so removing any member would make the set satisfy every resource constraint.∑
i∈T

xi · ri,k = uk ∀k ∈ R (4.1)

uk > bk ⇐⇒ vk = 1 ∀k ∈ R (4.2)∑
k∈R

vk ≥ 1 (4.3)

xi · (uk − ri,k) ≤ bk ∀i ∈ T, k ∈ R (4.4)

An MRIS only violates resource constraints if all of its tasks are executed in parallel.

57

4. S-GRAPH APPROACH FOR RCPSP AND ITS VARIANTS

If a precedence relation is set between any two of its tasks, the set is resolved. When

all MRISs are resolved, the schedule is resource-feasible, and mandatory precedence con-

straints are satisfied by recipe-arcs in S-graphs (c(i, i′) = di ∀(i, i′) ∈ A1). Products are

not considered in project scheduling, so a single product node can be used to represent

the completion of the project. An illustrative example is taken from Mingozzi et al. [69],

whose recipe graph is shown in Figure 4.1. All 3 resources have 4 unit capacity, and the

resource usages of tasks are shown below the task nodes.

Figure 4.1: Example RCPSP recipe graph

The new branching method requires storing the set of unresolved MRISs (I) at each

B&B node. So a B&B node is represented by (G(N,A1 ∪ A2), c, I). The branching step

creates child nodes from it in the following way:

1. If all MRISs have been resolved (I = ∅), the node is a solution, so return an empty

set of children.

2. Select an MRIS, I ∈ I, which has not yet been resolved.

3. For each task pair in the MRIS (∀(i, i′) ∈ I × I : i ̸= i′), create a child node

(G(N,A1 ∪ A′
2), c

′, I ′), where i must be finished before i′ can be started:

– Insert (i, i′) schedule-arc: A′
2 = A2 ∪ {(i, i′)}, c′(i, i′) = di

– Other arc weights remain unchanged: c′(j, k) = c(j, k) ∀(j, k) ∈ A1 ∪ A2

– Remove resolved MRISs: I ′ = {I ′ ∈ I | {i, i′} ⊈ I ′}

4. Return the set of children created in the previous step.

Schedule-arcs are inserted with the UIS method, as ample storage is assumed in the

58

4. S-GRAPH APPROACH FOR RCPSP AND ITS VARIANTS

RCPSP literature. However, if this approach is used for scheduling a production system

where some of the resources are machines that act as intermediate storage between stages,

the NIS schedule-arcs of the S-graph method can be used to correctly model the storage

constraints.

The effect of the arc insertion is demonstrated in Figure 4.2, where the MRIS of {7, 9}

is selected and resolved by fixing their order. Here, the heights of the rectangles correspond

to the resource usages of R1. Other tasks are only ordered by mandatory precedences.

Continuing the resolution of MRISs leads to resource feasible schedules, from which an

optimal solution is shown in Figure 4.3.

Figure 4.2: Resolving the incompatibility between tasks 7 and 9

4.3.2 Solution for the multi-mode variant

I extended the idea of incompatible sets for the multi-mode variant. As operation modes

can differ in resource usages, task-mode pairs need to be the members of MRISs, not tasks.

59

4. S-GRAPH APPROACH FOR RCPSP AND ITS VARIANTS

Figure 4.3: Optimal schedule with all 3 resource usages presented

So variable xi,m is now indexed by both task and mode but Constraint (4.1) ensures that

multiple modes of the same task will not be members of an MRIS, as this incompatibility

is resolved by any mode selection. The rest of the constraints are almost the same as in

the single-mode model, just extended with mode indices and non-renewable resources.∑
m∈Mi

xi,m ≤ 1 ∀i ∈ T (4.1)

∑
i∈T

∑
m∈Mi

xi,m · ri,m,k = uk ∀k ∈ RR ∪RN (4.2)

uk > bk ⇐⇒ vk = 1 ∀k ∈ RR ∪RN (4.3)∑
k∈RR∪RN

vk ≥ 1 (4.4)

xi · (uk − ri,m,k) ≤ bk ∀i ∈ T,m ∈ Mi, k ∈ RR ∪RN (4.5)

In the multi-mode variant, there are two types of incompatibility, depending on

whether only renewable resource constraints are violated by the set (vk = 0 ∀k ∈ RN),

or non-renewable capacities as well. In the latter case, the set will be referred to as an

infeasible set, which represents a forbidden mode assignment. The set of infeasible sets

is denoted by IN ⊆ I. These can only be resolved by different mode assignments, not

by sequencing decisions, while regular incompatible sets can be resolved by both types of

decisions.

Multi-mode branching also starts by selecting an incompatible set, but now there are

60

4. S-GRAPH APPROACH FOR RCPSP AND ITS VARIANTS

more ways to resolve it. Mode assignment decisions are also made, and stored in set

M ⊆ {(i,m) | ∀i ∈ T,m ∈ Mi} at each node.

Branching at node (G(N,A1 ∪ A2), c,M, I, IN) is done in the following way:

1. If all MRISs have been resolved (I = ∅), the schedule is a feasible solution1, so

return an empty set of children.

2. Select an MRIS, I ∈ I, which has not yet been resolved.

3. If I is not an infeasible set (I /∈ IN), create children (G(N,A1 ∪ A′
2), c

′,M ′, I ′, I ′
N)

for each pair of the set (∀((i,m), (i′,m′)) ∈ I × I : i ̸= i′):

– Make the mode assignments for the tasks inside I, and update the weights of

their outgoing arcs:

M ′ = M ∪ I, c′(j, j′) = dj,n ∀(j, n) ∈ I, (j, j′) ∈ A1

– Insert (i, i′) schedule-arc: A′
2 = A2 ∪ {(i, i′)}, c′(i, i′) = di,m

– Other arc weights remain unchanged.

4. Also create child nodes (G(N,A1∪A′
2), c

′,M ′, I ′, I ′
N) where I is resolved by different

mode assignments of its unscheduled tasks (I \ M). The set of different mode

assignments is M = {M∗ | ∀(i,m) ∈ I \ M, ∃m′ ∈ Mi : (i,m′) ∈ M∗, |M∗| =

|I \M |} \ {I \M}. Create a child node with each such assignment (∀M∗ ∈ M):

– Make the mode assignments for the tasks inside M∗, and update the weights

of their outgoing arcs:

M ′ = M ∪M∗, c′(j, j′) = dj,n ∀(j, n) ∈ M∗, (j, j′) ∈ A1

– No schedule-arcs are added (A′
2 = A2) and other arc weights remain unchanged.

5. In the child nodes generated above, remove the infeasible and incompatible sets that

have been resolved:

I ′
N = IN \ {I ′ ∈ IN | ∃(i,m) ∈ I, (i,m′) ∈ I ′ : m ̸= m′}

I ′ = I \ {I ′ ∈ I | (∃(i,m) ∈ I, (i,m′) ∈ I ′ : m ̸= m′) ∨ (∃(i,m), (i′,m′) ∈ I ′,

{(i0 := i, i1), (i1, i2), . . . , (ik−1, ik := i′)} ⊆ A1 ∪ A′
2 :

k−1∑
v=0

c′(iv, iv+1) ≥ di,m)}

6. Return the set of child nodes.

This branching method can result in lots of child nodes, especially when tasks have

many operation modes. However, the mode assignments resolve a lot of MRISs in the

beginning, resulting in a wide but not too deep search tree.

1It is possible that some tasks have no selected modes, if that does not impact the feasibility. In this
case, the fastest mode can be selected for each such task.

61

4. S-GRAPH APPROACH FOR RCPSP AND ITS VARIANTS

4.3.3 Solution for time-varying resource capacities

To model the time-varying resource availabilities, virtual tasks are used, as proposed by

Bartusch et al. [9]. Resource capacities are set to their maximum availability, then virtual

tasks with fixed timing decrease their availability for actual tasks, during time periods

where the capacity is lower. To fix the timing of the virtual tasks, a reference node and

ZW-arcs are introduced. The additional 0 node represents the start of the time horizon,

it is a task with 0 duration and no resource usage. To fix the start time of a virtual task

to s, a ZW-arc with weight s is added starting at 0 and going to the node of the virtual

task. The length of the virtual task (the resource disruption) is modeled by the recipe-arc

from the virtual task node to the product node.

LW and ZW-arcs in S-graphs were first introduced by Hegyháti et al. [43], where a

combinatorial algorithms was proposed for checking the waiting time constraints. Later,

a different approach was proposed for LW/ZW tasks in wet-etch scheduling based on re-

versed arcs with negative weights [44]. A more recent study compared different LW/ZW

techniques [42], and the negative arc method proved to be the most efficient. This tech-

nique was used here as well.

An LW task is modeled by an extra LW-arc for each recipe-arc but going in the reverse

direction, and instead of having a weight of di, its weight is −(di +max_wait). In LW

case, max_wait is the maximal allowed waiting time. ZW is the special case where

max_wait = 0.

The reverse arcs create directed cycles in the graph, which used to indicate infeasibility

in the original S-graphs. With LW-arcs however, cycles with negative total weight are

always feasible. If the weight of a cycle is 0, it is only infeasible if no LW-arcs are part of

it. If a cycle with weight 0 contains LW-arcs, that means that the waiting time is at the

maximal allowed amount. If a cycle has positive weight, it is always infeasible.

Virtual tasks have durations equal to the length of the resource disruptions. However,

unlike regular tasks and the 0 node, nodes of virtual tasks do not have recipe-arcs. They

are removed to prevent virtual tasks from unnecessarily increasing the length of the longest

path, and hence the completion time. If the V → A recipe-arc was present between a

virtual task V and the product node A, and V ends later than the regular tasks, the

longest path would be 0 → V → A with a length equal to the finish time of the resource

disruption. Durations of virtual tasks only appear as weights of schedule-arcs starting

from their nodes. Virtual tasks are included in MRISs too, so schedule-arcs may be

62

4. S-GRAPH APPROACH FOR RCPSP AND ITS VARIANTS

introduced between them and regular tasks, to decide if a task requiring a resource whose

capacity is decreased, is executed before or after the disruption.

Figure 4.4 shows the recipe graph of an example where no resources are available at

the 4-5 and 7-9 time periods. Additional nodes are highlighted in blue, including the 2

virtual tasks, starting at 4 and 7 time units. They have durations of 1 and 2 time units,

although they cannot be seen on the recipe graph, as the corresponding recipe-arcs are

not present, as explained above. If the decreased capacity is not enough to perform a

task, that task and the virtual task will be in an MRIS. Through sequencing decisions,

the actual task will be scheduled before or after the virtual task. Figure 4.5 shows a

solution of the example.

Figure 4.4: Example RCPSP recipe graph with virtual tasks

63

4. S-GRAPH APPROACH FOR RCPSP AND ITS VARIANTS

Figure 4.5: Schedule of the example with time-varying resource capacities

4.4 Computational tests

I validated the correctness of the proposed approach on benchmark problems of the

PSPLIB [51] collection. I also compared its performance to MILP models from the liter-

ature. A 1000 s solution time limit was set for each instance. MILP models were solved

with Gurobi and Coin-OR (CBC) solvers, and the S-graph algorithms were implemented

into the preexisting solver written in C++. The CP models used by the S-graph prepro-

cessor were solved with Google OR-tools solver, which took less than 1 second in most

cases (this time is included in the reported solution times).

4.4.1 Single-mode results

For the single-mode RCPSP, the j30 dataset of the PSPLIB was used, which contains

480 instances that were randomly generated with 48 different parameter settings. Each

instance contains 30 tasks and 4 resources.

I implemented 2 MILP models by Kopanos et al. [55] for the comparison, a discrete-

time (Kop-DT1) and a continuous-time (Kop-CT1) formulation. The single-mode tests

ran on a computer with an Intel Core i5-660 3.33 GHz CPU and 4 GB RAM. The MILP

models were solved with both CBC 2.9.7 and Gurobi 7.0.

From the 480 instances the following numbers were solved to optimality within the

1000 s time limit:

64

4. S-GRAPH APPROACH FOR RCPSP AND ITS VARIANTS

Kop-DT1 (Gurobi) 423

Kop-CT1 (Gurobi) 462

Kop-DT1 (CBC) 321

Kop-CT1 (CBC) 335

S-graph 360

Average solution times of solved cases showed a similar ranking, with Gurobi in the

lead, followed by the S-graph, and CBC at the end. From the 2 MILP models, Kop-

CT1 performed better. Instead of showing the results for all 480 instances, I selected 2

parameter sets to show the performance differences. The set j30_1 proved to be one of

the easiest, while set j30_5 contains much more difficult instances.

Table 4.1 shows the solution times for j30_1. The best-performing methods, Kop-CT1

(with Gurobi) and S-graph, managed to solve these instances under a few milliseconds.

However, CBC could not solve the Kop-DT1 model in instance 4 under the time limit.

Table 4.1: Solution times (s) for dataset j30_1

Instance Gurobi CBC S-graphKop-DT1 Kop-CT1 Kop-DT1 Kop-CT1

1 3.26 0.04 366.0 1.8 0.04
2 3.77 0.05 114.9 0.9 0.05
3 1.72 0.05 56.2 0.3 0.04
4 8.29 0.14 – 5.7 0.19
5 7.42 0.12 309.1 2.7 0.05
6 2.38 0.10 112.5 1.1 0.06
7 1.03 0.02 40.2 0.2 0.04
8 3.55 0.11 75.1 0.3 0.04
9 7.65 0.05 77.6 3.5 0.07
10 3.66 0.10 53.6 1.2 0.04

– : Terminated after 1000 s.

The solution times for j30_5 are shown in Table 4.2. Here, the larger differences

show the performance ranking more clearly. Kop-CT1 is the best approach but only if

using Gurobi. Compared to the open-source CBC solver, the proposed S-graph approach

performed better in most cases.

4.4.2 Multi-mode results

For testing the multi-mode variant, I used the j10 and j12 datasets of PSPLIB. These

instances were generated with 64 different parameter settings in each dataset, creating 10

65

4. S-GRAPH APPROACH FOR RCPSP AND ITS VARIANTS

Table 4.2: Solution times for dataset 5 of j30

Instance Gurobi CBC S-graphKop-DT1 Kop-CT1 Kop-DT1 Kop-CT1

1 31.68 1.54 – 277.0 423.10
2 659.77 1.77 – 157.9 13.89
3 676.62 5.71 – 355.9 96.03
4 854.70 8.59 – – 270.55
5 220.26 2.69 – 139.3 1.68
6 89.52 2.17 163.9 522.3 6.25
7 – 31.72 – – –
8 234.84 4.72 – – 9.88
9 31.24 3.78 – 384.4 116.88
10 143.72 1.45 – 187.2 3.61

– : Terminated after 1000 s.

instances with each. However, some instances are infeasible due to lack of non-renewable

resource capacities, so there are only 536 and 547 feasible instances, respectively. There

are 10 (j10) or 12 (j12) tasks in each instance, with 3 operation modes for every task, and

2 renewable, 2 non-renewable resources.

I implemented literature methods for comparison and validation of the proposed

method. The models by Kyriakidis et al. [57] could barely solve the most simple in-

stances under the 1000 s time limit, and even those took tens or hundreds of seconds

compared to under 1 s solution times of other methods. The SEE and OOE models by

Chakrabortty et al. [17] performed much better, so I omit the test results of the Kyriakidis

models.

The multi-mode tests ran on a laptop with an Intel i7-8750H 6-core 2.20 GHz CPU,

16 GB RAM, using Gurobi 9.1 as the MILP solver. Solution times on the j10 dataset are

shown in Figure 4.6.

From the 2 MILP models, OOE performed better, with an average solution time of

28.88 s, compared to the 49.20 s average time of SEE, which even hit the time limit

for 2 instances. The S-graph solver had an average solution time of 7.73 s, with solving

522 instances in under 20 s. However, the S-graph solver was terminated due to lack of

memory in 3 instances and failed to provide a solution. These are highlighted with solid

markers in the chart. The other few cases of high solution times were also caused by the

lack of physical memory, and resorting to the slower swap memory.

On the j12 dataset, the results are similar, only the MILP models hit the time limit

in more cases, and the S-graph ran out of memory more times too. Table 4.3 presents the

66

4. S-GRAPH APPROACH FOR RCPSP AND ITS VARIANTS

Figure 4.6: Solution times for the j10 dataset

results in more detail. The tests showed that the S-graph is faster on average but needs

a lot of memory space for some instances. The MILP models take a long time to prove

the optimality of a solution but they can still provide optimal solutions most of the time,

thanks to the heuristics in Gurobi.

Table 4.3: Solution statistics for the j12 dataset

SEE OOE S-graph

Total number of instances 547 547 547
Solved to proven optimality in 1000 s 443 480 504
Found optimal solution even if optimality
was not proven under 1000 s 536 547 509

Finished without running out of memory 547 547 509

Average running time (on all instances) 289.86 s 248.47 s 72.25 s
Average solution time (on proven optimal in-
stances) 125.07 s 145.34 s 65.41 s

Average solution time (on instances solved to
optimality by all methods) 124.80 s 107.43 s 35.88 s

67

4. S-GRAPH APPROACH FOR RCPSP AND ITS VARIANTS

4.5 Summarizing statements

Thesis statement 2 I have extended the S-graph framework with new branching algo-

rithms and modeling methods to solve the RCPSP with single or multiple modes per task,

and with constant or piecewise linear time-varying resource capacities.

Thesis statement 2/a I have formulated Constraint Programming models to generate

minimal resource incompatible sets of tasks or task-mode pairs for single- or multi-mode

RCPSPs.

Thesis statement 2/b I have developed branching methods for the S-graph based solu-

tion of the single- and multi-mode variants of the RCPSP, which can be used to partition

the search space by resolving incompatible and infeasible sets.

Thesis statement 2/c I have extended the S-graph model with virtual tasks to represent

resource disruptions at fixed time intervals.

My publications related to the statement: [80] and presentations [74, 75]

68

Chapter 5

Scheduling a forge with die

deterioration

The research presented in this chapter was motivated by a case study conducted at an

axle manufacturer. I thank Balázs Ferenczi for showing us the manufacturing processes

and providing data.

This research is aimed at scheduling a steel forge with the goal of minimizing setup and

storage costs under strict deadlines and special resource constraints. The main distinctive

feature of the problem is the deterioration of some equipment, in this case, the so-called

forging dies. While the aging effect – where production speed decreases through time – has

been widely investigated in the scheduling literature, durability, or lifespan deterioration

caused by equipment setup has not yet been addressed to my knowledge.

Equipment deterioration is an interesting scheduling challenge, which was discovered

while studying the operations of the forging process. The dies – used as templates for

forming the axles into the desired shapes – are deteriorating not only when they are

being used, but also with each changeover. Each die has a durability, measured in the

number of axles it can process before needing a restoration. This lifespan can only be

fully utilized if the die is used continuously. If the die is switched for another one, the

remaining number of uses will decrease. This is due to the calibration process required

on each setup of the die, and the physical deterioration from heating and cooling of the

die. Even though it seems wasteful to suspense the production of an axle type until its

die is completely deteriorated, sometimes it is necessary in order to meet deadlines, or

it may simply be advantageous in reducing storage costs. There is a trade-off between

minimizing the number of changeovers to decrease restoration costs, and minimizing the

69

5. SCHEDULING A FORGE WITH DIE DETERIORATION

inventory levels, storage costs and production delays.

I defined the identified scheduling problem, and formulated a discrete-time MILP

model with the RTN representation method to solve this problem. I validated the ap-

proach and tested its performance on 3-week long scenarios generated based on real life

data.

The chapter is structured as follows. Literature approaches dealing with similar

scheduling problems are reviewed in Section 5.1. Section 5.2 contains a detailed de-

scription of the investigated scheduling problem. My proposed MILP model to solve this

scheduling problem is presented in Section 5.3. In Section 5.4, an illustrative example is

presented, and the solution efficiency of the proposed approach is measured on randomly

generated instances as well.

5.1 Related literature

Even though the issue of equipment durability deterioration is present in other heavy

industry production systems, approaches in scheduling literature have not integrated it

into their models. Gascon and Leachman [32] proposed a dynamic programming approach

for minimizing changeover and storage costs under deterministic demands. Despite the

similar trade-off in their objective, the method can only be used for unit-sized batches and

equal processing times. These assumptions do not hold for the forge scheduling problem,

and the approach provides no way to model equipment deterioration.

Deterioration of production equipment was addressed in various papers in the liter-

ature [97, 109] but this deterioration, also called aging, has different effects. In their

investigated problems, the production speed of the equipment was decreasing with us-

age, not their remaining number of uses, which is the case with forging dies. Zhao and

Tang [109] presented an approach that also addressed the scheduling of restoration jobs

reverting the aging of equipment. Their method only considers a single machine, while in

the present problem, multiple dies must be scheduled.

The lack of research dealing with scheduling the operation and restoration of equip-

ment whose durability deteriorates with usage and setup motivated this work. I proposed

a general MILP model for optimizing the production schedules of systems with these

characteristics. While the investigated problem deals with a specific forge used for axle

production, the model is general enough to provide means for modeling other systems

70

5. SCHEDULING A FORGE WITH DIE DETERIORATION

with similar issues.

5.2 Problem definition

The investigated process transforms bare steel rods into axles of many different type,

whose set is denoted by A in the formal definition. Each axle has to be manufactured

from a single steel rod from a specific type (size). Different axle types, however, can share

the same rod type. R is the set of all different rod types, and for each axle type a ∈ A,

its required rod type is denoted by ra.

The steel rods are supplied by other companies, and the shipments are ordered based

on a long-term stock management plan, which is outside of the scope of this research.

Thus, the planned shipments are known and their set is denoted by S. Each shipment

s ∈ S arriving at T S
s may contain different rod types. The number of rods of type r ∈ R

delivered by shipment s ∈ S is denoted by QS
s,r.

On the other end of the process, all orders o ∈ O must be satisfied by their delivery

date TO
o . Early shipment is not possible, as transportation is managed by the clients, and

any delay would impose a serious risk of losing future contracts. An order may contain

different axle types, and the required quantity is denoted by QO
o,a for each axle type a ∈ A

in order o ∈ O.

The manufacturing process consists of 4 main consecutive stages with different char-

acteristics and challenges:

1. Die forging (df)

2. Heat treatment (ht)

3. Preparation (p)

4. Machining (m)

5.2.1 Forging

The steel rods first go through the forging stage one by one: they are heated up, placed

into a forging die and a hammering machine is forming them into the desired shape. This

is a very expensive machine, so there is only one available, which makes it the bottleneck

of the whole process. The scheduling planner has to decide when to switch from the

forging of one axle type to another.

Each axle type has its dedicated die that has to be used on the appropriate rods. The

71

5. SCHEDULING A FORGE WITH DIE DETERIORATION

dies deteriorate only while being used. After a certain level of distortion, they require

restoration, which takes trea hours and costs Cre units.

The durability of a recently restored die can be measured by the number of steel rods

that can be shaped with it. This number, QD,max
a can vary between different axle types

a ∈ A, and is well known from historical data. The number of die-forged axles produced

with a die between two restorations is, however, always lower, as each setup of a die

requires heating and producing some trial-axles. These operations decrease the durability

of the die by QD,su
a every time it is installed into the forge. The setup of a die also takes

tsu hours, and costs Csu cost units regardless of the selected die. In the beginning of the

time horizon, it is assumed that each die for axle type a ∈ A has a deteriorated durability

of QD,0
a , and none of them is currently installed in the forge.

After the setup, the time it takes to process each single steel rod is tdfa , depending on

the axle type a ∈ A.

5.2.2 Heat treatment

A die-forged axle needs to cool down and get some grinding before it can undergo the

heat treatment process. Since grinding does not need scarce resources, and can be done

anytime after the cooldown and before the next stage, the time required for these two

steps are merged into a single parameter, tcda that depends on the axle type a ∈ A.

The heat treatment furnace is regularly shut down for two reasons:

– Regardless of their type, the number of axles that can be treated in an hour, qht, is

significantly higher than the best hourly throughput of the die forge, and keeping

the furnace at high temperature requires a lot of energy, thus it is an unnecessary

cost.

– Regular maintenance is mandatory for the furnace.

The time intervals when the furnace is heated up and is operational are provided by

the long-term plan of the factory, which is based on historical data and industrial best

practices. These intervals are given by TF ⊆ [0,∞[.

Axles enter the furnace in batches, go through a corridor, then leave after a given

time. The temperature and duration parameters of heat treatment in the furnace can

be considered homogeneous over all axle types. There can be multiple batches inside

the furnace up to its maximum capacity, therefore, heat treatment is considered as a

continuous operation with a maximum flow-rate of qht pieces per hour.

72

5. SCHEDULING A FORGE WITH DIE DETERIORATION

5.2.3 Preparation and machining

During the preparation stage, a hydraulic press forms the product into its final geometry.

Both this and the next, machining stage have high capacity and flexible flow-rate, thus,

their resource needs are discarded, and only the time needed for the two steps for a single

heat-treated axle is given by tpma for each axle type a ∈ A.

5.2.4 Flexibility, objective and cost evaluation

The mid-range planner can make two types of decisions:

– when and how long will a die be used in the forge

– when should the die-forged axles go to heat treatment

The planned schedule must meet the following set of constraints:

– a step can only be carried out if the inputs (rods for forging, forged axles for heat

treatment) are available in the necessary quantity

– a die can not be used without restoration after its durability is depleted

– the orders have to be fulfilled without error

The goal is to minimize the cost over the planning period, that constitutes of:

– Production costs

– Die setup costs

– Die restoration costs

– Storage costs

Production costs are relative to the quantity, that is fixed by the orders, thus these

costs are independent of the schedule. The hourly cost of forging is denoted by cdf . Setup

and restoration costs are already discussed, these are axle-independent fixed costs that

occur upon each setup or restoration of a die, and has the magnitudes of Csu and Cre,

respectively.

There is a trade-off between storage and restoration costs. While actual storage costs

are negligible, the loss in capital causes a hidden cost of unused, unnecessarily stored

assets. So, a time- and piece-proportional storage cost is provided by the company to

account for this. The parameters cst,rr , cst,dfa , cst,hta , and cst,pma denote these costs for the

rods, die forged axles, heat treated axles, and delivery-ready axles, respectively. The

storage capacity can be considered as unlimited, and the intermediates, products do not

deteriorate over time.

73

5. SCHEDULING A FORGE WITH DIE DETERIORATION

The parameters are listed in the Nomenclature (5.6), along with the model variables

and short descriptions.

5.3 Proposed MILP model

I developed a MILP model with a global discrete uniform time grid to solve the scheduling

problem described above. This time representation has some advantages compared to

continuous time models in handling the types of constraints present in this problem [25,

36]. One challenge is that it is not known in advance how many times a die will be changed

before its restoration, and in what ratios will its lifespan be subdivided. This would make

it very difficult to determine the number of time points in a continuous time formulation.

Inventory costs, resource demands and arrivals are also easier to model in discrete time

models.

Resources are modeled according to the RTN (Resource Task Network) formula-

tion [83]. It provides a general representation of materials and production equipment,

and it is suitable for modeling the durability of the dies and its associated constraints.

This modeling method will be discussed in Section 5.3.3 in more detail.

5.3.1 Defining the discrete uniform time grid

To use a discrete uniform time grid, its resolution must be determined. The planning

horizon is partitioned into equal-length time slots, indexed by τ . The length of each time

slot, tτ should be chosen based on the values of other timing parameters. In an ideal case,

each parameter associated with a time is a multiple of tτ . Otherwise, the solution space of

the model may not include the optimal schedule. In the following, t̃ denotes the number

of time slots a time parameter t is stretched over: t̃ = ⌈ t
tτ
⌉.

While shorter time slots can guarantee more precise solutions, having more time slots

leads to more variables, and hence, more complex models. The end of the planning horizon

is the latest delivery date among the orders, therefore, the number of required time slots

is n = max
o∈O

{
⌈TO

o

tτ
⌉
}

.

The steel rods arriving in shipments are available at the end of the respective time

slot. To simplify the formulation, a computed parameter QS
τ,r is defined for the quantity

of steel rod r available from the end of time slot τ , and at the beginning in the case τ = 0.

74

5. SCHEDULING A FORGE WITH DIE DETERIORATION

QS
τ,r =

∑
s∈S:

(τ−1)tτ<TS
s ≤τ ·tτ

QS
s,r ∀r ∈ R, τ = 0, . . . , n (5.1)

Because of the flexibility of the preparation and machining steps, these operations do

not need to be scheduled. Instead, the heat treated axles must be delivered before the

delivery dates with leaving enough time for the last stages. A computed parameter QO
τ,a

is introduced to represent the quantity of heat treated axles required by the end of time

slot τ from axle type a.

QO
τ,a =

∑
o∈O:(τ−1)tτ<

TO
o −tpma ·QO

o,a≤τ ·tτ

QO
o,a ∀a ∈ A, τ = 0, . . . , n (5.2)

For the same reasons, storage costs of prepared and machined axles are omitted from

the cost function, as the last stages should be executed as late as possible, assuming the

storage costs of finished products are higher (otherwise, as early as possible).

5.3.2 Forging and heat treatment processes

The operations of the forge are modeled with 2 binary variables per pairs of time slot and

die type. xτ,a denotes whether die for axle type a is being used in time slot τ , and xsu
τ,a

whether it is being setup. Constraint (5.1) ensures that the forge cannot work on more

than one die at a time. ∑
a∈A

(
xτ,a + xsu

τ,a

)
≤ 1 ∀τ = 1, . . . , n (5.1)

The necessary setup time is enforced by (5.2). A die can only be used in time slot τ

if it was being setup in the previous required number of time slots, or if it was already in

use. Consequently, the die cannot be in use in the first time slot (5.3).

t̃su · xτ,a ≤ t̃su · xτ−1,a +
τ−1∑

τ ′=max{1,τ−t̃su}

xsu
τ ′,a ∀a ∈ A, τ = 2, . . . , n (5.2)

x1,a = 0 ∀a ∈ A (5.3)

Heat treatment is modeled with a continuous variable yτ,a, which denotes the number

75

5. SCHEDULING A FORGE WITH DIE DETERIORATION

of die-forged axles of type a heat treated during time slot τ .

yτ,a ≥ 0 ∀a ∈ A, τ = 1, . . . , n (5.4)

Multiple types of axles can be processed in the same time slot, only their total quantity is

constrained by qht, the throughput ratio of the furnace. Constraint (5.5) shows how the

furnace capacity can be calculated from its set of active time periods, TF . It is assumed

that TF is a union of continuous time intervals.∑
a∈A

yτ,a ≤
∫
[(τ−1)tτ ,τ ·tτ]∩TF

qht ∀τ = 1, . . . , n (5.5)

Die-forged intermediates require tcda hours for cooling and grinding before their heat

treatment. Constraints (5.6)-(5.7) ensure that the axles going into the furnace in time

slot τ were forged long enough ago. Variable rτ,a will be described in Subsection 5.3.3.

yτ,a ≤ rτ−t̃cda ,a ∀a ∈ A, τ = t̃cda + 1, . . . , n (5.6)

yτ,a = 0 ∀a ∈ A, τ = 1, . . . , t̃cda (5.7)

5.3.3 Material balance

In an RTN representation, both materials and available equipment are treated equally as

resources that can be consumed and produced by the processes. The resource levels at the

end of each time slot are represented by nonnegative continuous variables. rRτ,r, r
df
τ,a, and

rhtτ,a denote the resource levels of steel rods, die-forged, and heat treated axles, respectively.

The durabilities of dies are represented similarly by variables rDτ,a.

Starting resource levels are set by the shipments arriving at 0 time unit, and by QD,0
a

for die durabilities.

rR0,r = QS
0,r ∀r ∈ R (5.1)

rdf0,a = 0 ∀a ∈ A (5.2)

rD0,a = QD,0
a ∀a ∈ A (5.3)

Material levels at the end of time slots are calculated from the previous levels and the

76

5. SCHEDULING A FORGE WITH DIE DETERIORATION

changes caused by production processes (5.4)-(5.5).

rRτ,r = rRτ−1,r +QS
τ,r −

∑
a∈A:ra=r

(
QD,su

a

t̃su
xsu
τ,a +

tτ

tdfa
xτ,a

)
∀r ∈ R, τ = 1, . . . , n (5.4)

rdfτ,a = rdfτ−1,a −QO
τ,a −

QD,su
a

t̃su
xsu
τ,a −

tτ

tdfa
xτ,a ∀a ∈ A, τ = 1, . . . , n (5.5)

Die durabilities are calculated similarly but restorations make it more complex, as the

regained amount of durability depends on the current durability, which would introduce

a non-linear term into the equation, as shown in (5.6). Restoration of die for axle a is

represented by the binary variable wτ,a, which equals to 1 if the restoration is finished

upon the end of time slot τ .

rDτ,a = rDτ−1,a − (1− wτ,a)

(
QD,su

a

t̃su
xsu
τ,a +

tτ

tdfa
xτ,a

)
+ wτ,a ·QD,max

a ∀a ∈ A, τ = 1, . . . , n

(5.6)

This constraint is linearized with the following inequalities (5.7)-(5.9), replacing (5.6) in

the model. The lower bound (5.7) is similar to the material balance equations. The

upper bound (5.8) includes the restored durability as a big-M term, and a constant upper

bound (5.9) limits the durability to its maximum to prevent exceeding it with an early

restoration.

rDτ,a ≥ rDτ−1,a −
QD,su

a

t̃su
xsu
τ,a −

tτ

tdfa
xτ,a ∀a ∈ A, τ = 1, . . . , n (5.7)

rDτ,a ≤ rDτ−1,a −
QD,su

a

t̃su
xsu
τ,a −

tτ

tdfa
xτ,a + wτ,a ·QD,max

a ∀a ∈ A, τ = 1, . . . , n (5.8)

rDτ,a ≤ QD,max
a ∀a ∈ A, τ = 1, . . . , n (5.9)

The restoration time is enforced in Constraint (5.10) similarly as the setup time in

(5.2). While a die is being restored, it cannot be in use, therefore, a restoration can finish

only after enough idle time of the die.

wτ,a · t̃rea ≤ t̃rea −
τ∑

τ ′=τ−t̃rea +1

(
xτ ′,a + xsu

τ ′,a

)
∀a ∈ A, τ = t̃rea + 2, . . . , n (5.10)

wτ,a = 0 ∀a ∈ A, τ = 1, . . . , t̃rea (5.11)

77

5. SCHEDULING A FORGE WITH DIE DETERIORATION

5.3.4 Objective

The goal is to minimize the total cost of the production. As (5.1) shows, with the dis-

crete time grid, costs can be calculated easily by multiplying the cost factors with their

associated variables, and summing the costs imposed in each time slot.

min z =
n∑

τ=1

∑
r∈R

cst,rr · rRτ,r+

n∑
τ=1

∑
a∈A

(
cst,dfa · rdfτ,a + cst,hta · rhtτ,a + cdf · tτ · xτ,a +

Csu

t̃su
· xsu

τ,a + Cre · wτ,a

) (5.1)

5.3.5 Model improvements

The previous constraints are enough to model the scheduling problem and obtain the

optimal schedule. However, there is room to improve solution quality and performance.

[26] summarized the possible techniques for accelerating the solution process of MILP

models. Here, improvement of the model is attempted by adding tightening constraints

to decrease the search space.

The inequalities introduced in (5.7)-(5.9) to model the durability changes of dies allow

solutions where a die is not fully restored to QD,max
a . There is no benefit in partially

restoring a die, unless it has less cost or time requirement, which would require a different

model. Apart from the practical reasons, this may also make it more difficult to solve the

model. To enforce that dies are always fully restored, Constraint (5.1) is added to the

model.

rDτ,a ≥ wτ,a ·QD,max
a ∀a ∈ A, τ = 1, . . . , n (5.1)

Another simplification can be made for scheduling die restoration. It can be observed

that the restoration can be carried out anytime between two uses of a die with the timing

having no effect on the objective value. Therefore, forcing the restoration to end directly

before it is used again with Constraint (5.2) will tighten the solution space without loss

of optimality.

wτ−1,a ≤ xsu
τ,a ∀a ∈ A, τ = 2, . . . , n (5.2)

Further practical considerations can be made about allowing a die to be restored even

if it still has enough durability to be used further. The unused durabilities are wasted,

which could be handled by introducing a cost parameter for it, or a constraint like (5.3)

can be added to the model that prevents restoration if the remaining durability is over a

78

5. SCHEDULING A FORGE WITH DIE DETERIORATION

given minimum. In (5.3), the minimum is computed to be the durability used up during

a whole time slot.

wτ,a ≤ 1 +

tτ

tdfa
− rDτ−1,a

QD,max
a − tτ

tdfa

∀a ∈ A, τ = 2, . . . , n (5.3)

Adding this constraint may remove the optimal solution of the original model from the

solution space. However, it eliminates the waste caused by not utilizing the full durabilities

of dies. A better solution would be to add the associated costs of this wasted capacity to

the objective function, but determining the cost factor is difficult, and it would make the

model more complex.

The original model also allows to start setting up a die but not using it after setup.

Solutions like this would be suboptimal because of the added costs of the unnecessary

setup, so they can be eliminated from the search space without loss of optimality. Con-

straint (5.4) solves this by ensuring that if a setup is started in time slot τ , it is continued

until setup is finished, then forging must be started.

(xsu
τ,a − xsu

τ−1,a)(t̃
su + 1) ≤ xτ+t̃su,a +

τ+t̃su−1∑
τ ′=τ

xsu
τ ′,a ∀a ∈ A, τ = 2, . . . , n− t̃su (5.4)

5.4 Computational results

The proposed approach was tested on several test cases. The parameters were chosen

based on real data provided by the industrial partner.

First, a detailed example is shown with all input parameters and the obtained optimal

solution. Then, the results of further empirical analysis are presented based on randomly

generated instances.

For MILP optimization, Gurobi 8.0 was used on a computer with a dual-core Intel

i5-660 (3.33 GHz) CPU and 8 GB RAM. A time limit of 1000 s was set for the solver.

The basic model consists of the Constraints (5.1)-(5.5), and (5.7)-(5.1). This can be

extended with any combination of the Constraints (5.1)-(5.4).

5.4.1 Illustrative example

In this example problem, 3 weeks need to be scheduled. The length of the time slots

is chosen to be 8 hours. There are 4 axle types to be produced (A = {a1, a2, a3, a4}),

79

5. SCHEDULING A FORGE WITH DIE DETERIORATION

and they are forged from 3 rod types (R = {r1 = ra1, r2 = ra2, r3 = ra3 = ra4}). Most

supplies are available from the start, and 1 shipment is arriving later (Table 5.1).

There are product orders to be satisfied at the end of each week (Table 5.2). Other

input parameters are shown in Tables 5.3-5.5.

Table 5.1: Supply shipments

s T S
s QS

s,r1 QS
s,r2 QS

s,r3

1 0 2500 2000 3000
2 168 0 0 4000

Table 5.2: Product orders

o TO
o QO

o,a1 QO
o,a2 QO

o,a3 QO
o,a4

1 168 410 320 460 0
2 336 730 350 1440 840
3 504 600 480 1650 1120

Table 5.3: Cost parameters

Parameter Value

cst,rr [cu/h] r1: 0.000133, r2: 0.000104, r3: 0.000085
cst,dfa [cu/h] a1: 0.000213, a2: 0.000201, a3: 0.000190, a4: 0.000196
cst,hta [cu/h] a1: 0.000321, a2: 0.000307, a3: 0.000279, a4: 0.000292
Csu [cu] 800
Cre [cu] 2000

Table 5.4: Axle-dependent parameters

Parameter a1 a2 a3 a4

tdfa [h] 1/20 1/15 1/25 1/22
tcda [h] 4 4 4 4
tpma [h] 1 1 1 1
trea [h] 48 48 48 48

QD,max
a [pcs] 2000 1800 2500 2300
QD,0

a [pcs] 2000 1800 2500 2300
QD,su

a [pcs] 160 120 200 176

Table 5.5: Other parameters

Parameter Value

τ [h] 8
tsu [h] 8

qht [pcs/h] 72

TF
∞⋃
k=0

[0 + 0k, 54 + 70k]

The example was solved with the basic model and with each possible combination of

the last 4 constraints. Each variant obtained the same optimal solution with an objective

value of 8080.432048 cost units, in less than 5 minutes.

Figure 5.1 shows the Gantt chart of the forge, displaying when the dies are being used,

setup, or restored. It can be seen that dies are switched out several times in order to meet

the delivery dates. The resource levels are displayed in Figure 5.2, where order deliveries

(of heat treated intermediates), the supply shipment, and die durabilities can be seen.

80

5. SCHEDULING A FORGE WITH DIE DETERIORATION

Restore

Forge
Axle1Die

Axle1DieSetup

Axle2Die

Axle2DieSetup

Axle3Die

Axle3DieSetup

Axle4Die

Axle4DieSetup

80 160 240 320 400 4800Time [h]

Figure 5.1: Optimal schedule of the forging dies

0
2000
4000
6000

0

1000

2000

0
500

1000
1500

0 80 160 240 320 400 480

0
500

1000
1500

SteelRod1

SteelRod2

SteelRod3

Axle1DieDurability

Axle2DieDurability

Axle3DieDurability

Axle4DieDurability

Axle1

Axle2

Axle3

Axle4

Axle1Product

Axle2Product

Axle3Product

Axle4Product

Raw materials: rR

Die durabilities: rD

Intermediates: rdf

Products: rht

Time [h]

Figure 5.2: Resource levels of the optimal schedule

5.4.2 Performance analysis

To gain more insight about the effects of the 4 optional constraints on the performance,

they were tested on randomly generated instances.

20 instances were generated, each contains 4 products with a different rod used for

each. Raw materials are all present at the start. The planning horizon is 3 weeks, with

product orders due by the end of each week. Tables 5.6 and 5.7 show the intervals, from

which the parameter values were chosen randomly with uniform distribution. Values

associated with timing or quantity were chosen from integer intervals.

From the 20 instances 11 were infeasible, which was reported by the solver in under

15 s on each such instance. 1 instance was significantly more difficult to solve than others,

where none of the model variants could prove optimality in the 1000 s time limit, with

81

5. SCHEDULING A FORGE WITH DIE DETERIORATION

Table 5.6: Parameter intervals for orders and starting supplies

o TO
o QO

o,a1 QO
o,a2 QO

o,a3 QO
o,a4

1 168 0 [500 .. 1500] [500 .. 1500] [500 .. 1500]
2 336 [500 .. 1500] 0 [500 .. 1500] [500 .. 1500]
3 504 [500 .. 1500] [500 .. 1500] 0 [500 .. 1500]

s T S
s QS

s,r1 QS
s,r2 QS

s,r3 QS
s,r4

1 0 [4000 .. 6000] [4000 .. 6000] [4000 .. 6000] [4000 .. 6000]

Table 5.7: Intervals of other parameters

Parameter Interval

cst,rr [cu/h] [0.00008, 0.00015]
cst,dfa [cu/h] [0.00020, 0.00030]
cst,hta [cu/h] [0.00030, 0.00040]
Csu [cu] [600, 1000]
Cre [cu] [1500, 2000]

1/tdfa [pcs/h] [20 .. 30]
tsu [h] 8
tcda [h] 4
tpma [h] 1
trea [h] 48

QD,max
a [pcs] [1800 .. 2500]
QD,0

a [pcs] QD,max
a

QD,su
a [pcs] [100 .. 200]
τ [h] 8

qht [pcs/h] 72

TF
∞⋃
k=0

[0 + 0k, 54 + 70k]

the best gap among them being 20%.

The solution times of the remaining 8 instances are shown in Table 5.8. The 4 bits in

the first column represent whether each of the last 4 constraints are included in that model

variant. The rows are ordered first by the number of instances solved to optimality (Opt),

then by their average solution times (Avg). The best solution time for each instance is

highlighted in bold.

From the 4 constraints, (5.3) had the largest impact on solution time. Adding this

constraint to the model resulted in higher solution times. It also increased the objective

values by 10-15%, as this constraint does not allow restoration of a die that still has

durability for more forging.

The other 3 constraints do not affect the optimal objective value, their purpose is to

82

5. SCHEDULING A FORGE WITH DIE DETERIORATION

Table 5.8: Solution times (CPU s) of different model variants

Variant Instance Opt Avg(20-23) 3 4 7 8 9 11 13 18

1001 626.84 103.91 469.95 18.91 506.02 190.36 30.89 145.49 8 343.60
0100 837.79 148.71 246.36 26.55 426.94 267.40 27.89 278.86 8 362.28
1101 866.91 317.47 169.28 12.13 412.26 241.16 27.86 333.82 8 375.65
1100 990.01 292.54 520.21 7.49 175.92 91.90 69.68 481.47 8 403.25
1000 569.78 133.22 209.09 24.08 – 138.55 59.57 161.47 7 366.20
0101 569.96 425.12 567.54 23.19 309.59 333.47 43.29 – 7 474.68
1110 – 711.86 294.65 52.35 693.62 515.32 11.06 233.57 7 501.38
0001 725.71 300.85 513.43 18.98 – 197.56 60.04 – 6 535.17
1111 – 675.92 286.33 49.54 – 472.78 37.42 677.56 6 577.73
0000 – 154.79 737.37 100.67 – 233.75 48.29 – 5 586.10
0110 – – 213.17 134.01 – 593.66 39.33 615.16 5 621.70
0111 986.67 – 707.98 50.73 – – 17.36 528.99 5 699.08
1010 – 762.81 – 94.62 – – 28.54 821.13 4 745.23
1011 – 835.25 982.05 95.70 – – 22.70 – 4 770.63
0011 – 802.83 – 269.15 – – 26.00 – 3 788.66
0010 – – – 140.99 – – 31.94 – 2 796.99

Avg 885.85 541.58 557.34 69.94 782.77 517.24 36.37 642.35

– : Terminated after 1000 s.

reduce the solution space by eliminating suboptimal and redundant solutions. There is

a high variance in the effects of using them but adding any of them to the model was

better than using none of them. The impacts of individual constraints also varies among

the instances, neither constraint dominates the others in performance.

Based on the test results, the developed model is a successful first attempt in solving

the newly described problem. To solve larger, more complex examples efficiently, new

improvement methods or heuristic approaches need to be developed, which opens potential

for future research on the topic.

5.5 Summarizing statements

Thesis statement 3 I have identified and defined a scheduling problem with novel fea-

tures at an axle-manufacturing system, and developed a discrete-time MILP model that

can solve it.

Thesis statement 3/a I proposed 4 additional constraints to tighten the formulation,

and compared their impacts on solution performance with randomly generated test cases.

My publications related to the statement: [78] and presentation [76]

83

5. SCHEDULING A FORGE WITH DIE DETERIORATION

5.6 Nomenclature

Sets

R Set of all raw materials, i.e., rod types

A Set of axle types

O Set of orders

S Set of supply shipments

Symbolic parameters

ra ∈ R the required rod type for axle type a ∈ A

Timing related parameters and intervals

T S
s [h] the expected arrival time of shipment s ∈ S

TO
o [h] the delivery date of order o ∈ O

tsu [h] the setup time needed for the forge before starting to work on a new series of

axles

t̃su = ⌈ tsu

tτ
⌉ the setup time converted to number of time slots

tdfa [h] the time needed to die-forge an axle from type a ∈ A

tcda [h] the time needed for a forged axle a ∈ A to cool down before the heat treatment

t̃cda [h] the cooldown time converted to number of time slots

tpma [h] the time needed to prepare and machine a heat-treated axle a ∈ A

trea [h] the time required for the restoration of the deteriorated die for an axle a ∈ Axles

t̃rea = ⌈ trea
tτ
⌉ the restoration time converted to number of time slots

TF ⊆ [0,∞[the time intervals when the furnace is working

tτ [h] the length of each time slot

n the number of time slots

Material quantity related parameters

QS
s,r [pcs] the quantity of rod r ∈ R supplied by shipment s ∈ S

QS
τ,r [pcs] the quantity of rod r ∈ R arriving during time slot τ

QO
o,a [pcs] the quantity of finished axle a ∈ A to be shipped for order o ∈ O

QO
τ,r [pcs] the quantity of heat treated axle a ∈ A required to be completed at the end

of time slot τ

QD,max
a [pcs] the maximal durability of the die for axle type a ∈ A measured in number

of rods processed

84

5. SCHEDULING A FORGE WITH DIE DETERIORATION

QD,0
a [pcs] the starting durability of the die for axle a ∈ A in the beginning of the time

horizon

QD,su
a [pcs] the number of rods wasted during the setup phase for the axle type a ∈ A

qht [pcs/h] the number of axles (of any kind) that can go under heat treatment hourly

Cost related parameters

Csu [cu] the cost of a complete forge setup

cst,rr [cu/h/pcs] the hourly storage cost for rods with type r ∈ R

cst,dfa [cu/h/pcs] the hourly storage cost for die forged axles of type a ∈ A

cst,hta [cu/h/pcs] the hourly storage cost for heat treated axles of type a ∈ A

cst,pma [cu/h/pcs] the hourly storage cost for prepared and machined axles of type

a ∈ A

cdf [cu/h] the hourly cost of forging

Cre [cu] the cost of restoring any type of die to its maximum durability

Variables

xτ,a binary variable, denotes whether the die for axle type a is being used in time

slot τ

xsu
τ,a binary variable, denotes whether the die for axle type a is being setup in time

slot τ

yτ,a ≥ 0 denotes the number of axles from type a going through heat treatment in time

slot τ

wτ,a binary variable, denotes whether the restoration of the die for axle type a is

finished at the end of time slot τ

rRτ,r the number of steel rods on hold at the end of time slot τ

rdfτ,a the number of die-forged axles on hold at the end of time slot τ

rhtτ,a the number of heat treated axles on hold at the end of time slot τ

rDτ,a the remaining durability of the die for axle a at the end of time slot τ

85

Chapter 6

S-graph approach for minimizing

freshwater usage

In this chapter, I present my extension of the S-graph framework which solves the simul-

taneous scheduling and water minimization of batch processing systems. The proposed

approach tackles truly batch processes with a single contaminant, and allows only a single

water source to be reused for each sink. The presented algorithm and model extension has

been implemented and tested on various case-studies from the literature. This develop-

ment provides an opportunity for further extensions to address wider range of problems,

such as having multiple contaminants, semi-continuous behavior, or cyclic operations.

Water is one of the most important natural resources of life. While it is considerably

cheap and vastly available currently, except for extreme locations, this is not guaranteed

in the future. Being provident with water has multitude of advantages in both short-

and long term. Using less clean water not only brings immediate financial benefits, it

simultaneously reduces wastewater production, related treatment costs, and the impact

on the environment. Reducing the water footprint of a batch system is not a trivial task,

as water sources and sinks need to be matched not only in amount and quality, but in

time as well.

The chapter is structured as follows. In Section 6.1, the investigated problem and its

features are defined. Existing literature methods for water minimization and integrating

it with scheduling are summarized in Section 6.2. My extension to the S-graph framework

for the investigated problem is presented in Section 6.3. Then Section 6.4 presents the

validation tests of the proposed method on literature examples.

87

6. S-GRAPH APPROACH FOR MINIMIZING FRESHWATER USAGE

6.1 Problem definition

The objective of the investigated problem class is to simultaneously minimize fresh water

usage and wastewater production by maximizing the reuse of process water. The non-

water related features (task dependencies, heterogeneous machines, etc.) of the scheduling

problem can be handled by the equipment-based branching (EQB) algorithm of the S-

graph framework, which was presented in Chapter 2.

Apart from raw materials and intermediates, each task requires a certain amount

of water (min
i), that has to meet a predefined quality criteria, i.e., the level of a single

addressed contaminant has to stay below the maximal allowed level (cmax
i) in the provided

water. After the task is executed, it provides a given amount of water (mout
i), whose quality

is assumed to be the fixed value (ci) belonging to the worst case scenario, regardless of

the input contamination level. It is assumed that each task is executed in a fully batch

fashion, i.e., all of its raw materials, intermediates and input water are consumed at once

at the beginning of its execution, and all of the intermediates, products, output water are

produced at the end of its execution.

While clean water is assumed to be an unlimited resource, tasks may reuse the output

water of other tasks partially or completely. Splitting of output water streams is allowed,

i.e., the output of a task may be used as the input for several different tasks. However, a

task is only allowed to receive water from at most one other task, whose output may be

mixed with clean water, if the volume or quality dictates so.

Transfers of intermediates and water are assumed to take a negligible amount of time.

Dedicated storage may or may not be available for intermediates, however, it is assumed,

that water storages are readily available for as many different contamination levels as

required, with sufficient capacity. Mixing of output water flows is not allowed with each

other, only with clean water at the input of another task.

All tasks have to be carried out by one of the suitable units, and the products must

be produced before the predefined global deadline. Within this time horizon, tasks may

be scheduled freely, as long as production dependencies are met, and the products are

finished before the deadline. Naturally, units can process only one task at a time, and

water can only be reused from a task that finishes the latest at the starting time of its

destination task.

88

6. S-GRAPH APPROACH FOR MINIMIZING FRESHWATER USAGE

6.2 Literature summary

Environment-friendly operation of the production industry has gained major focus over

the last few decades in the literature. Sustainable production has become more and

more prevalent, and a lot of research effort were made to reduce environmental impact

by developing new technologies, integrating different planning phases, exploring a wider

operational spectrum, etc. Apart from other indicators, freshwater consumption has

gained decent interest in the literature, and dedicated sessions and even conferences to

tackle this issue.

While in most developed countries, clean water is currently a relatively cheap and

mostly available resource, 33 percent of the population do not have any access to safe

drinking water [103]. Only 0.5 percent of world’s water is both drinkable and accessible,

and has to satisfy the water needs of the worlds population and its ecosystem [100, SDG

12]. Moreover, global water demand has been steadily increasing about 1 percent per

year since 1980 and is projected to increase by 55 percent by 2050 [101]. Even some

developed countries have water shortage problems, see the increasing severity of droughts

and unsustainable irrigation usage of the Colorado River [21], or the extreme shrinking

of the Aral Sea [33].

A prognosed 40 percent shortfall in freshwater resources by 2030 drives the world

towards a global water crisis [100, SDG 6]. This shortage is expected to have a significant

effect on the industry as well. If unsustainable pressures are put on global water resources

and the natural environment continues to be degraded, an estimated 45 percent of the

global gross domestic product will be at risk by 2050 [100, SDG 6].

Thus, preparing production processes to operate in a water preserving manner is of ut-

most importance in both delaying or avoiding a water shortage crisis, and to accommodate

for one if it is unavoidable. This battle can be fought on many fronts with developing less

water intensive technologies, improving water treatment and conservation options, etc.

[100, SDG 6, 12]. A promising direction is the development of improved management for

wastewater resources. Today, 80 percent of all wastewater is released to the environment

without any treatment [102]. Improved treatment technologies, and reuse can significantly

ease the pressure on the environment.

Early approaches in water minimization focused on continuous processes. These tech-

niques have been well established and may be found in reviews [8, 28] and textbooks [30,

95]. On the other hand, water minimization for batch processes has gained relatively less

89

6. S-GRAPH APPROACH FOR MINIMIZING FRESHWATER USAGE

attention, partly due to the discrete nature of time dimension which makes the modeling

of batch processes more complex.

Early approaches on water minimization are mostly based on predetermined fixed

schedule, water usage is optimized in a subsequent step. The developed techniques based

on this fixed schedule-type approach can be broadly categorized as pinch analysis-based

and mathematical programming. In the former, graphical [105, 65] or algebraic targeting

tools [29] have been developed to identify water flow targets ahead of detailed design. The

main limitation of the pinch analysis-based techniques is that they are bound to handle

single contaminant cases. This limitation can be handled conveniently using mathematical

programming techniques [7, 6, 49, 60]. Note however that these earlier works mainly

developed based on pre-determined fixed schedule. A review that summarized the state-

of-the-art water minimization problem for batch processes up to last decade may be found

in [35]. The latter also outlined that simultaneous water minimization and scheduling

will be the next trend of development for research in this area, as they can achieve more

efficient water integration than the fixed schedule techniques.

The method proposed by [20] is a non-linear (MINLP) model with equidistant, discrete

time points. The model covers a wide range of constraints, including water treatment

operations, and the objective function combines the minimization of both wastewater

generation and annual operating costs. However, the non-linear formulation and the

large number of integer variables that can result from the discrete time model makes its

application limited to relatively small instances.

The MILP model proposed by [64] uses a continuous time representation and the state

sequence network (SSN) methodology to represent tasks as state transitions. Additionally

to the problem class defined in Section 6.1, the model by [64] can handle variable batch

sizes with equipment capacities, splitting tasks among multiple units, storage vessel for

water, and reusing water from multiple sources in one task. The methodology has been

further improved in the following years, for example, [71] extended the approach for long-

term scheduling scenarios with cyclic operations. [18] formulated a similar model, and

included multiple freshwater streams with varying contamination and cost. [91] extended

the formulation to simultaneously optimize energy usage and it also handles multiple

contaminants.

The approach proposed by [59] aims to combine the advantages of the insight-based

water minimization methods and the MILP-based scheduling models. The model consists

90

6. S-GRAPH APPROACH FOR MINIMIZING FRESHWATER USAGE

of two parts: water contamination levels are modeled based on the automated targeting

model (ATM) developed by [27], and a discrete time scheduling model. The approach can

model systems with separate, limited storage vessels for each contamination level, but the

task-unit assignment must be fixed in the problem input.

In recent papers, Li and Majozi proposed a dynamic programming based approach [62,

61] for simultaneous scheduling and water minimization, with wastewater regeneration.

6.3 Proposed approach

The aim of this work is to extend the S-graph framework for minimizing wastewater pro-

duction by water reuse. While the investigated problem class considers a simple form of

water treatment model that has been tackled by other approaches from the literature,

it also comprises a general and detailed scheduling side. The S-graph framework can

effortlessly address scheduling-related parameters and restrictions such as general prece-

dential recipes, unit-specific processing times, changeover times and costs, or limitations

on storage time for intermediate products. An additional advantage of any S-graph based

approach is the ability to easily report several solutions. These can be, for example, the

n best solutions, the pareto-optimal ones if two objectives are given, the solutions with

objective values within a certain range of the optimal one, or even all feasible solutions.

6.3.1 New branching method

My proposed approach for solving the problem defined in Section 6.1 is a modification of

the EQB algorithm detailed in Chapter 2.

As a reminder, these are the new input parameters of the problem, aside from the

ones already covered in the S-graph framework:

min
i Required input water mass of task i

mout
i Output water mass of task i

cmax
i Maximum allowed input contamination of task i

ci Output contamination of task i

To model water flow decisions, a set of triplets is stored at each search node: F ⊂

Nt×Nt×R. A triplet (s, d, f) means that f units of water are transferred from the output

of task s to the input of task d. The remaining water output of task s is calculated as

ws = mout
s −

∑
(s,d,f)∈F

f .

91

6. S-GRAPH APPROACH FOR MINIMIZING FRESHWATER USAGE

The original bound function calculates the lower bound of the makespan. Here, this is

not the objective but used as a feasibility test to check against the allowed time horizon.

The new bound function returns the total unused water output (
∑
i∈Nt

wi) if the makespan

is feasible, or ∞, if infeasible.

The new branching method works in the following way:

1. Generate child nodes with the EQB method. These nodes represent the cases when

the newly scheduled task only uses clean water.

2. For each of these nodes (G(N,A1 ∪ A2), c, {Si ∀i ∈ Nt}, SOUN, last_node, F),

generate sibling nodes with alternative water transfers into the scheduled task d:

– For all possible water sources (∀s ∈ Nt \ {d} : ws > 0) that are not scheduled

after d (there is no directed path in A from d to s), generate alternative nodes

with water reuse:

– Calculate how much of the source water can be reused:

f = min

{
ws,m

in
d ,

cmax
d

cs
min

d

}
(6.1)

– If f ̸= 0, create an alternative node (G′(N,A1 ∪ A′
2), c′, {Si ∀i ∈ Nt},

SOUN, last_node, F ∪ {(s, d, f)}) where a schedule-arc is inserted from s

to d: A′
2 = A2 ∪ {(s, d)}, c′(s, d) = min

j∈Ss

{pts,j}

3. Return the set of child nodes generated above.

The proposed approach serves as a basis for several future extensions. Addressing

multiple contaminants can easily be achieved by extending Equation (6.1) with a con-

centration limit for each contaminant. If the set of contaminants is denoted by K, the

equation becomes:

f = min

{
ws,m

in
d ,min

k∈K

{
cmax
d,k

cs,k
min

d

}}
(6.2)

Cyclic scheduling can also be addressed with some modifications to the S-graph model

and the bounding function. A simple cyclic solution is presented in Example 1 of Sec-

tion 6.4, however a general cyclic solution with S-graphs has not been developed yet.

The solution method can be extended to allow mixing of different water sources, by

replacing the bounding function with a linear programming model. Modeling semicontin-

uous operations is also a potential topic for future research. While these changes require

additional research, they are suitable extensions for the S-graph. Introducing a shared

water storage, however, is something that seems rather challenging to do in a natural way,

and poses a difficult task to overcome in future research.

92

6. S-GRAPH APPROACH FOR MINIMIZING FRESHWATER USAGE

6.3.2 Demonstrative example

The solution approach is demonstrated on the case study by [59], with the tasks mod-

ified to be truly batch. This example entails two products, A and B, that has to be

produced through 2 consecutive steps, each on 4 dedicated units within a 5 hour time

horizon. Because of the dedicated units, no assignment or sequencing decisions need to

be made, which renders this example adequate to better highlight the novel extensions of

the algorithm. The recipe-graph for the example is shown in Figure 6.1.

For each task, the water requirement and maximal contamination level is indicated in

the top pocket, e.g., A1 requires 20 tons of clean water, while B2 needs 80 tons of water

whose contamination level is below 50 ppm. At the bottom, the amount and quality of

the output water is indicated. For example B1 produces 20 tons of water with 800 ppm

contaminant.

Figure 6.1: Recipe graph of case study by [59] (node 0)

In the trivial solution, where all of the water requirements are satisfied with clean

water, the freshwater usage (and hence the wastewater production) is 370 tons (20 + 250

+ 20 + 80).

The proposed S-graph algorithm starts from this recipe graph (G0), and explores all

possible schedules considering water reuses as well. The original EQB method selects an

equipment unit, let this be U1 now. The only task that can be assigned to U1 is A1,

so a single child node is generated by the EQB. Then, the alternative water assignments

would be generated. However, A1 requires clean water, so there is no option to reuse

water here, thus, only one child node is returned, where all of its water requirement is

supplied with freshwater. The S-graph of this node is shown in Figure 6.2, which is very

similar to the recipe graph. However, here A1 is already assigned to U1, and the 20 tons

in the top pocket indicates that this much freshwater was required.

Now this node gets branched by the algorithm and for example, U2 is selected. The

93

6. S-GRAPH APPROACH FOR MINIMIZING FRESHWATER USAGE

Figure 6.2: S-graph after the first assignment (node 1)

only task for U2 is A2, so a single child node is created by the EQB. However, A2 does

not require completely clean water, so there are 4 alternatives for its water supply:

1. Use clean water only.

2. Use water output of A1.

3. Use water output of B1.

4. Use water output of B2.

Note that reusing water from multiple sources is not considered, as stated in Section 6.1.

For the first case, the procedure is similar as it was for U1 and A1 in the previ-

ous branching step. The resulting node with 270 tons of freshwater usage is shown in

Figure 6.3.

Figure 6.3: S-graph of node 2

For the second alternative, A1 can provide 20 tons of water with 100 ppm contam-

ination. 100 ppm is twice the limit for A2, however, 230 tons of freshwater has to be

mixed for the required amount, thus the contamination will drop to 8 ppm, which is suit-

able for A2, so all 20 tons can be reused. This is calculated using the formula shown in

Equation (6.1):

f = min

{
wA1,m

in
A2,

cmax
A2

cA1

mA2

}
= min{20t, 250t, 50ppm

100ppm
250t} = 20t (6.3)

94

6. S-GRAPH APPROACH FOR MINIMIZING FRESHWATER USAGE

Figure 6.4 shows the resulting S-graph, where the schedule-arc associated with this water

transfer is highlighted with a green dashed line and annotated with the water amount.

Note that the top pocket of A2 now only indicates 230 tons of freshwater usage, and the

remaining water output of A1 (wA1) in the bottom pocket is reduced to 0 tons.

Figure 6.4: S-graph of node 3

In the third case, B1 can provide 20 tons of water as well. However, it is much

more contaminated, having 800 ppm. Even with the added 230 tons of clean water, the

contamination level would be 64 ppm, which is above the limit. Thus, only part of that

20 tons can be reused. To determine the amount, Equation (6.1) is used again:

f = min{20t, 250t, 50ppm

800ppm
250t} = 15.625t (6.4)

With reusing 15.625 tons, 234.375 tons of freshwater is needed, as indicated in the top

pocket of A2 in Figure 6.5.

Figure 6.5: S-graph of node 4

Note that the introduced schedule-arc has the timing weight of 2 hours, thus the

earliest starting of A2 is moved from 1 hour to 2 hours, and it will finish at 4.5 hours,

half hour before the end of the time horizon. This makespan is indicated by the longest

path B1 → A2 → A in the S-graph. The lower bound on the freshwater requirement at

95

6. S-GRAPH APPROACH FOR MINIMIZING FRESHWATER USAGE

this node is 254.375 tons, based on the tasks whose inputs have been determined (A1 and

A2). Note that 4.375 tons of water still remains at B1, which can be used for other tasks

as an input.

The last option is to provide water from B2. Using the same formula, at most 15.625

tons of water can be used from that source as well, as its contamination level is the same.

The generated node is also similar, it is shown in Figure 6.6. However, the longest path

in this graph is B1 → B2 → A2 → A, with a makespan of 6.5 hours, which is above the

time horizon, so this node is pruned from the search.

Figure 6.6: S-graph of node 5

The progress of the B&B algorithm so far is shown in Figure 6.7. At this stage, node

2, 3, and 4 are still unexplored. For each node, the lower bound on the makespan and on

the freshwater usage is indicated. If the former ever exceeds the time horizon (as it was

the case for node 5), the partial schedule is pruned because of infeasibility.

Figure 6.7: Top of the B&B tree of the algorithm

A possible way to continue the search is to branch at node 4, select unit U3, and

generate child nodes for B1 with the alternatives: i) using only clean water, ii) reuse

96

6. S-GRAPH APPROACH FOR MINIMIZING FRESHWATER USAGE

water from A1, iii) reuse water from A2, iv) reuse water from B2. The latter two would

create a cycle in the S-graph, indicating an infeasibility, and even the second option would

violate the deadline, leaving only clean water usage as an option after reusing water from

B1 for A2. Further exploring this branch, the last unit to schedule is U4 for B2, which

can either use clean water, or water from A1, A2, B1. Except for using water from A2,

all the options are feasible and provide complete schedules. The state of the search tree

after these branching steps would look like as indicated in Figure 6.8.

Figure 6.8: B&B tree of the algorithm - extended

At this stage, node 11 provides the best schedule with 334.375 tons of freshwater usage.

This schedule corresponds to the option of using 15.625 tons of the output of B1 for A2

and 20 tons of the output of A1 for B2. The tree still has two unexplored nodes (2 and

3) where a better solution may be found. After enumerating the rest of the tree, it can

be found that node 11 is actually the optimal solution.

97

6. S-GRAPH APPROACH FOR MINIMIZING FRESHWATER USAGE

6.4 Empirical validation

The proposed approach was tested on literature examples for validation. Solution times

were less than 10 ms for each example, so the computational need was negligible. Note

that in these examples, there is exactly 1 dedicated unit for each task but the proposed

approach can also be used for problems where multiple units may be suitable for processing

a task.

6.4.1 Example 1

Example 1 is adapted from [65], with its limiting water data given in Table 6.1. Two

sub-scenarios are analyzed here, i.e. single batch and cyclical operations. To test the

proposed scheduling approach, the fixed start and end times of the original example are

ignored, and a flexible schedule is assumed, within the time horizon of 8 h.

For single batch operation, the optimal solution from the S-graph approach shows

(Figure 6.9) that 1560 kg freshwater is needed, same as that reported by [65]. However,

the S-graph solver reported a slightly different schedule (Figure 6.10), where instead of

splitting the output water from Wash A between Wash B and Wash C, its output is reused

entirely by Wash B, while the output of the latter gets reused again for Wash C. This

solution has the same objective value as the one given by [65]. The resulting schedule

does not require water storage, while the original, fixed schedule required the output of

Wash A to be stored either in a dedicated tank, or in an idle unit [65].

Table 6.1: Limiting water data for Example 1

Water Max. inlet Outlet
input and contamination contamination

Task Predecessors Unit output (kg) (kg salt / kg water) (kg salt / kg water) Duration (h)

Wash A - Reactor A 1000 0 0.1 3
Reaction B - Reactor B 280 0.25 0.51 4
Wash B B reaction Reactor B 400 0.1 0.1 1.5
Reaction C - Reactor C 280 0.25 0.51 4
Wash C C reaction Reactor C 400 0.1 0.1 1.5

[65] showed that more water can be reused in the cyclic state of the network with

storage tanks, reducing freshwater usage to 1000 kg. When cyclic scheduling is considered,

there are several methods to model the relationship between consecutive cycles [13]. Since

in this example there are no precedence relations between tasks in different units, the job

repetition and machine chain repetition models are equivalent, and the resulting cycle time

is the longest path in the recipe graph, which is 5.5 h. In cyclic scheduling, the cycle time

98

6. S-GRAPH APPROACH FOR MINIMIZING FRESHWATER USAGE

Figure 6.9: S-graph solution for Example 1

Figure 6.10: Schedule obtained for Example 1

is used instead of the makespan to determine if the schedule fits into the time horizon. In

consequence, the S-graph shown in Figure 6.11 is allowed despite the makespan of 10 h,

and the time horizon being 8 h. Figure 6.12 shows the cyclic schedule. This solution

achieves the same 1000 kg freshwater usage that was proposed by [65]. Assuming that

the reactors can act as storage tanks while they are inactive, only 400 kg of storage is

needed for storing the part of the output water of Wash A that is reused by Wash B. If

a storage tank is not available, the cycle time increases to 7 h.

The previously described cyclic scheduling method does not allow water to be trans-

ferred between consecutive batches of the recipe (e.g. from the dark gray tasks to the

light gray ones). Also, the machine chain repetition model would require a more complex

cycle time computation method if there are tasks with multiple suitable units. A more

general approach for cyclic scheduling with S-graphs is a topic of future research [81].

99

6. S-GRAPH APPROACH FOR MINIMIZING FRESHWATER USAGE

Figure 6.11: S-graph solution for the cyclic variant of Example 1

Figure 6.12: Cyclic schedule for Example 1

6.4.2 Example 2

Example 2 was originally reported by [63]. The example was later reinvestigated by

[61], where solution without the use of water storage was proposed. While the original

case study was a fixed load problem, here it is converted to a fixed flowrate problem,

where the amount of water needed by a task is independent of its contamination level,

as described in Section 6.1. The required water amounts and concentrations have been

adjusted according to the fixed load solutions reported by [61] to get comparable solutions

for validation. The limiting water data after the conversion are shown in Table 6.2.

[61] reported a solution with 80.5 t freshwater usage, with a water storage tank of

10.83 t, and its corresponding makespan is 8.5 h. Two improved solutions were also

proposed, where no water storage is required, with the makespan reduced to 6 and 5 h

[61].

With the time horizon set to 5 h, the S-graph solver found the same schedule as [61]

100

6. S-GRAPH APPROACH FOR MINIMIZING FRESHWATER USAGE

Table 6.2: Limiting water data for Example 2

Water Max. inlet Outlet
input and contamination cont. Duration

Task Unit output (t) (ppm) (ppm) (h)

A U1 50 0 400 2
B U2 22.5 0 400 1
C U3 10 200 500 3
D U4 24 350 600 4
E U5 33.33 400 700 2.5

with 80.5 t freshwater usage, it is shown in Figure 6.13. This schedule is also the optimal

solution for the cyclic variant of this scheduling problem with a cycle time of 4 h. The

schedule does not require a water storage tank.

Figure 6.13: Schedule for Example 2 with makespan = 5 h, cycle time = 4 h

Increasing the time horizon does not result in any better solutions in terms of water

reuse. On the other way, smaller time horizons were investigated, and resulted with two

other Pareto-optimal solutions for the non-cyclic variant. The objective values of these

solutions are shown in Figure 6.14, while their schedules are presented in Figure 6.15-6.16.

These alternative solutions have higher water consumption (+26% and +46%), but the

reduced makespan (−10% and −20%) can be beneficial for production. This demonstrates

how the algorithm can be applied iteratively to obtain the optimal water reuse solutions

for different makespan values.

101

6. S-GRAPH APPROACH FOR MINIMIZING FRESHWATER USAGE

Figure 6.14: Pareto-optimal solutions for Example 2

Figure 6.15: Schedule for Example 2 with makespan = 4.5 h

Figure 6.16: Schedule for Example 2 with makespan = 4 h

102

6. S-GRAPH APPROACH FOR MINIMIZING FRESHWATER USAGE

6.5 Summarizing statements

Thesis statement 4 I have developed a solution approach based on the S-graph frame-

work for scheduling batch processes with the objective of freshwater usage minimization

through wastewater recycling, and validated it on literature examples.

Thesis statement 4/a I have extended the S-graph model to store decisions about reusing

the output water of a task as input water for other tasks.

Thesis statement 4/b I have modified the equipment-based branching method of the

S-graph framework to generate partial schedules with alternative water usage decisions

subject to contamination constraints, and to introduce the necessary precedence relations

between the affected tasks.

My publication related to the statement: [79]

103

Chapter 7

Conclusions and future prospects

I studied several very different scheduling problems and solution approaches. Most prac-

tical applications require specific modeling considerations, leading to even more types of

problems and needs for research efforts in finding adequate solution methods for them. It

is clear that scheduling is a hard problem, so the process of improving existing approaches

will continue in the foreseeable future.

In Chapter 3, I presented improved methods for scheduling automated manufacturing

systems. This research topic is getting more and more attention, as automation levels rise

throughout many industrial sectors. Future research can further improve the efficiency of

these systems through cyclic scheduling, and online, reactive scheduling based on real-time

data received from IoT sensors.

The RCPSP presented in Chapter 4 is a very general problem class that can serve as the

base of a wide range of scheduling problems where tasks require multiple scarce resources

at the same time. Just as I proposed an S-graph-based solution method for dealing with

these resource constraints, integrating them into other existing machine scheduling, batch

process scheduling, or other solution approaches is a promising topic for future research.

In Chapter 5, I presented an example from the steel-processing industry for problem-

specific constraints that have not yet been addressed by scheduling methods. Despite the

specific nature of this problem, the deterioration of production tools is apparent in many

industries, so my presented approach may be used in other fields as well.

Integrating water minimization into scheduling, as presented in Chapter 6, and con-

sidering other environmental impacts of the production systems is an important aspect

that needs more attention in scheduling and production planning. I am happy to see that

this is already happening, and that I could contribute to this trend.

105

7. CONCLUSIONS AND FUTURE PROSPECTS

Apart from the possible research continuation opportunities discussed above, I have

several plans to continue my academic research within the field of scheduling. As au-

tomation and IoT are becoming a dominant factor in the industry, scheduling is getting

more and more important and also more complex. More available information can help to

obtain more fine-grain and thus, more efficient schedules, which can be more precisely ex-

ecuted with automated robots. However, it also increases the complexity of optimization

models.

From the various problem classes, I am most interested in cyclic scheduling. I plan

to study the techniques for modeling periodic operations and possibly come up with new

methods, for example, extending the S-graph framework for cyclic scheduling.

I am also interested in studying other solution methods. Until now, I concentrated

on exact approaches but I would like to get more experience with heuristic methods

as well. These days, the field of metaheuristics is a very popular research area with

practical applications in scheduling and many other problems. Another area I plan to

study is artificial intelligence and its integration with operations research. It can support

the decision-making when the amount of information becomes too big to handle with

conventional optimization methods.

It is clear that scheduling will only gain more research interest in the future. I am

confident that many bachelor, master, and doctoral students will choose a similar research

topic in the next few years, and I hope they will find this work useful. Maybe I will even

have the chance to supervise some of them.

106

Summary

There are many different problem classes in the research area of scheduling, and also a

lot of solution techniques one can use for them. I presented solution approaches which I

developed based on MILP modeling techniques and the S-graph framework. They were

made for 4 distinct scheduling problems and their variants.

For scheduling automated wet-etch stations and other automated manufacturing sys-

tems, I proposed 2 improved formulations of literature MILP models. I improved the

performance of a model that can solve the most general variant of this problem class. For

the less general model, I proposed extensions to fix a potential infeasibility in the reported

solutions, and to handle more problem features.

I developed new branching algorithms for the S-graph framework to solve the RCPSP,

its multi-mode variant, and its variant with time-varying resource capacities. The pro-

posed methods have comparable performances with literature MILP models.

I identified a novel scheduling problem in a steel-processing forge, where production

equipment deteriorates through setups and changeovers, and developed an MILP model

to solve it. I also proposed several optional constraints to improve the performance of the

model.

I proposed a modified version of an S-graph branching algorithm, which can be used

for the minimization of freshwater usage and wastewater generation of a process during

its scheduling by allowing the reuse of the output water of a process as the input water

of processes.

My proposed approaches have been tested on problem instances either taken from the

literature or generated systematically. The tests confirmed the correctness of the proposed

methods, and the solution performance was compared to literature approaches, where it

was applicable.

107

Összefoglaló

Az ütemezés tudományterületén számos különféle feladatosztályt tartanak számon, me-

lyekre sokféle megoldási technika ismert. Az értekezésemben bemutatott megoldó mód-

szerek MILP modellezési technikákra és az S-gráf módszertanra épülnek. Ezen módszerek

4 különböző ütemezési feladatot, és azok további változatait képesek megoldani.

A nedves-marási rendszerek és más automatizált gyártórendszerek ütemezésére a szak-

irodalomban megjelent MILP modellek közül 2-t továbbfejlesztettem. Az általánosabb

feladatosztályú modellnek javítottam a megoldási hatékonyságát. A speciálisabb feladat-

osztályú modellt pedig kiterjesztettem további korlátozások kezelésére, köztük egy gya-

korlatban megvalósíthatatlan megoldást okozó hiányosságot is javítottam.

Új elágazási algoritmusokat fejlesztettem ki az S-gráf keretrendszerhez, hogy képes

legyen megoldani az RCPSP-t és annak a többmódú, valamint az időben változó erőforrás-

kapacitásokat tartalmazó változatát. Ezen módszerek a szakirodalmi MILP modellekhez

hasonló megoldási hatékonyságúak.

Egy újfajta ütemezési feladatot azonosítottam egy acélfeldolgozó kovácsüzemben, ami-

ben a gyártóeszközök élettartama a termékváltások során szükséges konfigurálási folya-

matok hatására csökken. Egy MILP modellt és hozzá különböző javító korlátozásokat

készítettem a feladat megoldására.

Kifejlesztettem egy módosított elágazási eljárást az S-gráf keretrendszerhez, amely

képes minimalizálni a víz-felhasználást és szennyvíz-termelést az ütemezendő gyártási

folyamatban azáltal, hogy lehetővé teszi, hogy egy folyamatból kijövő szennyezett víz

felhasználásra kerüljön más folyamatok bemenetén.

Az általam kifejlesztett módszereket szakirodalmi vagy véletlenszerűen generált fel-

adatokon teszteltem, hogy ellenőrizzem a helyességüket. Valamint a megoldási hatékony-

ságukat is összehasonlítottam szakirodalmi módszerekével, ahol erre lehetőség volt.

108

Bibliography

[1] R. Adonyi, E. Shopova, and N. Vaklieva-Bancheva. “Optimal schedule of a dairy

manufactory”. In: Chemical and Biochemical Engineering Quarterly 23.2 (2009),

pp. 231–237. url: http://silverstripe.fkit.hr/cabeq/past-issues/article/316.

[2] R. Adonyi, G. Biros, T. Holczinger, and F. Friedler. “Effective scheduling of a

large-scale paint production system”. In: Journal of Cleaner Production 16.2

(2008), pp. 225–232. doi: 10.1016/j.jclepro.2006.08.021.

[3] R. Adonyi, I. Heckl, A. Szalamin, and F. Olti. “Routing of railway systems with

the S-graph framework for effective scheduling”. In: Chemical Engineering

Transactions 21 (2010), pp. 913–918. doi: 10.3303/CET1021153.

[4] A. M. Aguirre, C. A. Méndez, and P. M. Castro. “A novel optimization method

to automated wet-etch station scheduling in semiconductor manufacturing

systems”. In: Computers & Chemical Engineering 35.12 (2011), pp. 2960–2972.

doi: 10.1016/j.compchemeng.2011.02.014.

[5] A. M. Aguirre, C. A. Méndez, Á. García-Sánchez, M. Ortega-Mier, and

P. M. Castro. “General framework for automated manufacturing systems:

Multiple hoists scheduling solution”. In: Chemical Engineering Transactions 32

(2013), pp. 1381–1386. doi: 10.3303/CET1332231.

[6] M. Almató, A. Espuña, and L. Puigjaner. “Optimisation of water use in batch

process industries”. In: Computers & Chemical Engineering 23.10 (1999),

pp. 1427–1437.

[7] M. Almató, E. Sanmartí, A. Espuña, and L. Puigjaner. “Rationalizing the water

use in the batch process industry”. In: Computers & chemical engineering 21

(1997), S971–S976.

109

http://silverstripe.fkit.hr/cabeq/past-issues/article/316
https://doi.org/10.1016/j.jclepro.2006.08.021
https://doi.org/10.3303/CET1021153
https://doi.org/10.1016/j.compchemeng.2011.02.014
https://doi.org/10.3303/CET1332231

[8] M. Bagajewicz. “A review of recent design procedures for water networks in

refineries and process plants”. In: Computers & chemical engineering 24.9-10

(2000), pp. 2093–2113.

[9] M. Bartusch, R. H. Möhring, and F. J. Radermacher. “Scheduling project

networks with resource constraints and time windows”. In: Annals of Operations

Research 16.1 (1988), pp. 199–240. doi: 10.1007/BF02283745.

[10] C. Bessiere. “Constraint Propagation”. In: Handbook of Constraint Programming.

Ed. by F. Rossi, P. van Beek, and T. Walsh. Amsterdam: Elsevier, 2006. Chap. 3,

pp. 29–83.

[11] S. Bhushan and I. A. Karimi. “An MILP approach to automated wet-etch station

scheduling”. In: Industrial & Engineering Chemistry Research 42.7 (2003),

pp. 1391–1399. doi: 10.1021/ie020296c.

[12] S. Bhushan and I. A. Karimi. “Heuristic algorithms for scheduling an automated

wet-etch station”. In: Computers and Chemical Engineering 28.3 (2004),

pp. 363–379. doi: 10.1016/S0098-1354(03)00192-3.

[13] P. Brucker and T. Kampmeyer. “A general model for cyclic machine scheduling

problems”. In: Discrete Applied Mathematics 156.13 (2008), pp. 2561–2572. doi:

10.1016/j.dam.2008.03.029.

[14] P. M. Castro, I. E. Grossmann, and Q. Zhang. “Expanding scope and

computational challenges in process scheduling”. In: Computers & Chemical

Engineering 114 (2018), pp. 14–42. doi:

https://doi.org/10.1016/j.compchemeng.2018.01.020.

[15] P. M. Castro, L. J. Zeballos, and C. A. Méndez. “Hybrid time slots sequencing

model for a class of scheduling problems”. In: AIChE Journal 58.3 (2012). doi:

10.1002/aic.

[16] J. Cerdá, G. P. Henning, and I. E. Grossmann. “A Mixed-Integer Linear

Programming Model for Short-Term Scheduling of Single-Stage Multiproduct

Batch Plants with Parallel Lines”. In: Industrial & Engineering Chemistry

Research 36.5 (1997), pp. 1695–1707. doi: 10.1021/ie9605490.

110

https://doi.org/10.1007/BF02283745
https://doi.org/10.1021/ie020296c
https://doi.org/10.1016/S0098-1354(03)00192-3
https://doi.org/10.1016/j.dam.2008.03.029
https://doi.org/https://doi.org/10.1016/j.compchemeng.2018.01.020
https://doi.org/10.1002/aic
https://doi.org/10.1021/ie9605490

[17] R. K. Chakrabortty, R. A. Sarker, and D. L. Essam. “Event Based Approaches

for Solving Multi-mode Resource Constraints Project Scheduling Problem”. In:

Lecture Notes in Computer Science 8838 (2014), pp. 375–386. doi:

10.1007/978-3-662-45237-0_35.

[18] N. D. Chaturvedi and S. Bandyopadhyay. “Optimization of multiple freshwater

resources in a flexible-schedule batch water network”. In: Industrial and

Engineering Chemistry Research 53.14 (2014), pp. 5996–6005. doi:

10.1021/ie403638v.

[19] J. Cheng, J. Fowler, K. Kempf, and S. Mason. “Multi-mode resource-constrained

project scheduling problems with non-preemptive activity splitting”. In:

Computers and Operations Research 53 (2015), pp. 275–287. doi:

10.1016/j.cor.2014.04.018.

[20] K.-F. Cheng and C.-T. Chang. “Integrated Water Network Designs for Batch

Processes”. In: Industrial & Engineering Chemistry Research 46.4 (2007),

pp. 1241–1253. doi: 10.1021/ie0611150.

[21] N. Christensen and D. Lettenmaier. “A multimodel ensemble approach to

assessment of climate change impacts on the hydrology and water resources of

the Colorado River Basin”. In: Hydrology and Earth System Sciences 11.4 (2007),

pp. 1417–1434. doi: 10.5194/hess-11-1417-2007.

[22] B. Dávid, O. Ősz, and M. Hegyháti. “Robust Scheduling of Waste Wood

Processing Plants with Uncertain Delivery Sources and Quality”. In:

Sustainability 13.9 (2021). doi: 10.3390/su13095007.

[23] E. L. Demeulemeester and W. S. Herroelen. “Modelling setup times, process

batches and transfer batches using activity network logic”. In: European Journal

of Operational Research 89.2 (1996), pp. 355–365. doi:

10.1016/0377-2217(94)00249-5.

[24] S. Ferrer-Nadal, E. Capón-García, C. A. Méndez, and L. Puigjaner. “Material

transfer operations in batch scheduling. A critical modeling issue”. In: Industrial

and Engineering Chemistry Research 47.20 (2008), pp. 7721–7732. doi:

10.1021/ie800075u.

111

https://doi.org/10.1007/978-3-662-45237-0_35
https://doi.org/10.1021/ie403638v
https://doi.org/10.1016/j.cor.2014.04.018
https://doi.org/10.1021/ie0611150
https://doi.org/10.5194/hess-11-1417-2007
https://doi.org/10.3390/su13095007
https://doi.org/10.1016/0377-2217(94)00249-5
https://doi.org/10.1021/ie800075u

[25] C. A. Floudas and X. Lin. “Continuous-time versus discrete-time approaches for

scheduling of chemical processes: a review”. In: Computers & Chemical

Engineering 28.11 (2004), pp. 2109–2129.

[26] C. A. Floudas and X. Lin. “Mixed Integer Linear Programming in Process

Scheduling: Modeling, Algorithms, and Applications”. In: Annals of Operations

Research 139.1 (2005), pp. 131–162.

[27] D. C. Y. Foo. “Automated targeting technique for batch process integration”. In:

Industrial & engineering chemistry research 49.20 (2010), pp. 9899–9916.

[28] D. C. Y. Foo. “State-of-the-Art Review of Pinch Analysis Techniques for Water

Network Synthesis”. In: Industrial & Engineering Chemistry Research 48.11

(2009), pp. 5125–5159. doi: 10.1021/ie801264c.

[29] D. C. Y. Foo, Z. A. Manan, and Y. L. Tan. “Synthesis of maximum water

recovery network for batch process systems”. In: Journal of Cleaner Production

13.15 (2005), pp. 1381–1394.

[30] D. C. Foo. Process integration for resource conservation. CRC press, 2012.

[31] Y. Fu, G. Tian, A. Fathollahi-Fard, A. Ahmadi, and C. Zhang. “Stochastic

multi-objective modelling and optimization of an energy-conscious distributed

permutation flow shop scheduling problem with the total tardiness constraint”.

In: Journal of Cleaner Production 226 (2019), pp. 515–525. doi:

10.1016/j.jclepro.2019.04.046.

[32] A. Gascon and R. C. Leachman. “A Dynamic Programming Solution to the

Dynamic, Multi-Item, Single-Machine Scheduling Problem”. In: Operations

Research 36.1 (1988), pp. 50–56.

[33] B. Gaybullaev, S.-C. Chen, and Y.-M. Kuo. “Large-scale desiccation of the Aral

Sea due to over-exploitation after 1960”. In: Journal of Mountain Science 9.4

(2012), pp. 538–546. doi: 10.1007/s11629-012-2273-1.

[34] C. D. Geiger, K. G. Kempf, and R. Uzsoy. “A Tabu search approach to

scheduling an automated wet etch station”. In: Journal of Manufacturing Systems

16.2 (1997), pp. 102–116.

112

https://doi.org/10.1021/ie801264c
https://doi.org/10.1016/j.jclepro.2019.04.046
https://doi.org/10.1007/s11629-012-2273-1

[35] J. F. Gouws, T. Majozi, D. C. Y. Foo, C. L. Chen, and J. Y. Lee. “Water

minimization techniques for batch processes”. In: Industrial and Engineering

Chemistry Research 49.19 (2010), pp. 8877–8893. doi: 10.1021/ie100130a.

[36] I. Harjunkoski, C. T. Maravelias, P. Bongers, P. M. Castro, S. Engell,

I. E. Grossmann, J. Hooker, C. Méndez, G. Sand, and J. Wassick. “Scope for

industrial applications of production scheduling models and solution methods”.

In: Computers and Chemical Engineering 62 (2014), pp. 161–193. doi:

10.1016/j.compchemeng.2013.12.001.

[37] S. Hartmann. “Project scheduling with resource capacities and requests varying

with time: a case study”. In: Flexible Services and Manufacturing Journal 25.1

(2013), pp. 74–93. doi: 10.1007/s10696-012-9141-8.

[38] S. Hartmann and D. Briskorn. “A survey of variants and extensions of the

resource-constrained project scheduling problem”. In: European Journal of

Operational Research 207.1 (2010), pp. 1–14. doi: 10.1016/j.ejor.2009.11.005.

[39] S. Hartmann and D. Briskorn. “An updated survey of variants and extensions of

the resource-constrained project scheduling problem”. In: European Journal of

Operational Research 297.1 (2022), pp. 1–14. doi:

https://doi.org/10.1016/j.ejor.2021.05.004.

[40] M. Hegyháti, T. Majozi, T. Holczinger, and F. Friedler. “Practical infeasibility of

cross-transfer in batch plants with complex recipes: S-graph vs MILP methods”.

In: Chemical Engineering Science 64.3 (2009), pp. 605–610. doi:

10.1016/j.ces.2008.10.018.

[41] M. Hegyháti, O. Ősz, B. Kovács, and F. Friedler. “Scheduling of automated

wet-etch stations”. In: 21st International Congress of Chemical and Process

Engineering and 17th Conference on Process Integration, Modelling and

Optimisation for Energy Saving and Pollution Reduction. CHISA/PRES. Prague,

Czech Republic, Aug. 2014.

[42] M. Hegyháti, T. Holczinger, and O. Ősz. “Addressing storage time restrictions in

the S-graph scheduling framework”. In: Optimization and Engineering

0123456789 (2020). doi: 10.1007/s11081-020-09548-1.

113

https://doi.org/10.1021/ie100130a
https://doi.org/10.1016/j.compchemeng.2013.12.001
https://doi.org/10.1007/s10696-012-9141-8
https://doi.org/10.1016/j.ejor.2009.11.005
https://doi.org/https://doi.org/10.1016/j.ejor.2021.05.004
https://doi.org/10.1016/j.ces.2008.10.018
https://doi.org/10.1007/s11081-020-09548-1

[43] M. Hegyháti, T. Holczinger, A. Szoldatics, and F. Friedler. “Combinatorial

approach to address batch scheduling problems with limited storage time”. In:

Chemical Engineering Transactions 25 (2011), pp. 495–500. doi:

10.3303/CET1125083.

[44] M. Hegyháti, O. Ősz, B. Kovács, and F. Friedler. “Scheduling of Automated

Wet-Etch Stations”. In: Chemical Engineering Transactions 39 (2014),

pp. 433–438. doi: 10.3303/CET1439073.

[45] T. Holczinger. “Módszer köztes tárolókat nem tartalmazó szakaszos működésű

rendszerek ütemezésére”. PhD thesis. Veszprémi Egyetem, 2004.

[46] T. Holczinger, T. Majozi, M. Hegyhati, and F. Friedler. “An automated

algorithm for throughput maximization under fixed time horizon in multipurpose

batch plants: S-Graph approach”. In: Computer Aided Chemical Engineering.

Vol. 24. 2007, pp. 649–654. doi: 10.1016/S1570-7946(07)80131-3.

[47] T. Holczinger and Á. Orosz. “Throughput Maximization with S-graph

Framework using Global Branching Tree”. In: MACRo 2015 1.1 (2015),

pp. 201–210. doi: 10.1515/macro-2015-0020.

[48] C. Jiang, F. Wen, Y. Xue, F. Chen, Y. Sun, and L. Zhang. “Optimal power

management strategy for industrial users based on the state task network

considering user preferences”. In: 2021 IEEE Kansas Power and Energy

Conference, KPEC 2021. 2021. doi: 10.1109/KPEC51835.2021.9446210.

[49] J.-K. Kim and R. Smith. “Automated design of discontinuous water systems”. In:

Process Safety and Environmental Protection 82.3 (2004), pp. 238–248.

[50] R. Klein. “Project scheduling with time-varying resource constraints”. In:

International Journal of Production Research 38.16 (2000), pp. 3937–3952. doi:

10.1080/00207540050176094.

[51] R. Kolisch and A. Sprecher. “PSPLIB - A project scheduling problem library”. In:

European Journal of Operational Research 96.1 (1997), pp. 205–216. doi:

10.1016/S0377-2217(96)00170-1.

114

https://doi.org/10.3303/CET1125083
https://doi.org/10.3303/CET1439073
https://doi.org/10.1016/S1570-7946(07)80131-3
https://doi.org/10.1515/macro-2015-0020
https://doi.org/10.1109/KPEC51835.2021.9446210
https://doi.org/10.1080/00207540050176094
https://doi.org/10.1016/S0377-2217(96)00170-1

[52] R. Koller, L. Ricardez-Sandoval, and L. Biegler. “Stochastic back-off algorithm

for simultaneous design, control, and scheduling of multiproduct systems under

uncertainty”. In: AIChE Journal 64.7 (2018), pp. 2379–2389. doi:

10.1002/aic.16092.

[53] E. Kondili, C. Pantelides, and R. Sargent. “A general algorithm for short-term

scheduling of batch operations—I. MILP formulation”. In: Computers & Chemical

Engineering 17.2 (1993), pp. 211–227. doi: 10.1016/0098-1354(93)80015-F.

[54] O. Koné, C. Artigues, P. Lopez, and M. Mongeau. “Event-based MILP models for

resource-constrained project scheduling problems”. In: Computers & Operations

Research 38.1 (2011), pp. 3–13. doi: 10.1016/j.cor.2009.12.011.

[55] G. M. Kopanos, T. S. Kyriakidis, and M. C. Georgiadis. “New continuous-time

and discrete-time mathematical formulations for resource-constrained project

scheduling problems”. In: Computers & Chemical Engineering 68 (2014),

pp. 96–106. doi: 10.1016/j.compchemeng.2014.05.009.

[56] S. Kreter, J. Rieck, and J. Zimmermann. “Models and solution procedures for the

resource-constrained project scheduling problem with general temporal

constraints and calendars”. In: European Journal of Operational Research 251.2

(2016), pp. 387–403. doi: 10.1016/j.ejor.2015.11.021.

[57] T. S. Kyriakidis, G. M. Kopanos, and M. C. Georgiadis. “MILP formulations for

single- and multi-mode resource-constrained project scheduling problems”. In:

Computers & Chemical Engineering 36.1 (2012), pp. 369–385. doi:

10.1016/j.compchemeng.2011.06.007.

[58] J. M. Laínez, M. Hegyháti, F. Friedler, and L. Puigjaner. “Using S-graph to

address uncertainty in batch plants”. In: Clean Technologies and Environmental

Policy 12.2 (2010), pp. 105–115. doi: 10.1007/s10098-009-0240-5.

[59] J.-Y. Lee and D. C. Y. Foo. “Simultaneous Targeting and Scheduling for Batch

Water Networks”. In: Industrial & Engineering Chemistry Research 56.6 (2017),

pp. 1559–1569. doi: 10.1021/acs.iecr.6b03714.

[60] B.-H. Li and C.-T. Chang. “A mathematical programming model for

discontinuous water-reuse system design”. In: Industrial & Engineering Chemistry

Research 45.14 (2006), pp. 5027–5036.

115

https://doi.org/10.1002/aic.16092
https://doi.org/10.1016/0098-1354(93)80015-F
https://doi.org/10.1016/j.cor.2009.12.011
https://doi.org/10.1016/j.compchemeng.2014.05.009
https://doi.org/10.1016/j.ejor.2015.11.021
https://doi.org/10.1016/j.compchemeng.2011.06.007
https://doi.org/10.1007/s10098-009-0240-5
https://doi.org/10.1021/acs.iecr.6b03714

[61] Z. Li and T. Majozi. “Optimal Design of Batch Water Network with a Flexible

Scheduling Framework”. In: Industrial & Engineering Chemistry Research 58.22

(2019), pp. 9500–9511. doi: 10.1021/acs.iecr.9b00399.

[62] Z. Li and T. Majozi. “Optimal Synthesis of Batch Water Networks Using

Dynamic Programming”. In: Process Integration and Optimization for

Sustainability 2.4 (2018), pp. 391–412. doi: 10.1007/s41660-018-0061-2.

[63] Y. Liu, G. Li, L. Wang, J. Zhang, and K. Shams. “Optimal design of an

integrated discontinuous water-using network coordinating with a central

continuous regeneration unit”. In: Industrial and Engineering Chemistry Research

48.24 (2009), pp. 10924–10940. doi: 10.1021/ie9000053.

[64] T. Majozi. “Wastewater minimisation using central reusable water storage in

batch plants”. In: Computers & Chemical Engineering 29.7 (2005),

pp. 1631–1646. doi: 10.1016/j.compchemeng.2005.01.003.

[65] T. Majozi, C. J. Brouckaert, and C. A. Buckley. “A graphical technique for

wastewater minimisation in batch processes”. In: Journal of Environmental

Management 78.4 (2006), pp. 317–329. doi: 10.1016/j.jenvman.2005.04.026.

[66] T. Majozi and F. Friedler. “Maximization of throughput in a multipurpose batch

plant under a fixed time horizon: S-graph approach”. In: Industrial and

Engineering Chemistry Research 45.20 (2006), pp. 6713–6720. doi:

10.1021/ie0604472.

[67] C. Méndez and J. Cerdá. “State-of-the-art review of optimization methods for

short-term scheduling of batch processes”. In: Computers & Chemical Engineering

30.6-7 (2006), pp. 913–946. doi: 10.1016/j.compchemeng.2006.02.008.

[68] C. Méndez, G. Henning, and J. Cerdá. “An MILP continuous-time approach to

short-term scheduling of resource-constrained multistage flowshop batch

facilities”. In: Computers & Chemical Engineering 25.4 (2001), pp. 701–711. doi:

10.1016/S0098-1354(01)00671-8.

[69] A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco. “An Exact Algorithm

for the Resource-Constrained Project Scheduling Problem Based on a New

Mathematical Formulation”. In: Management Science 44.5 (1998), pp. 714–729.

doi: 10.1287/mnsc.44.5.714.

116

https://doi.org/10.1021/acs.iecr.9b00399
https://doi.org/10.1007/s41660-018-0061-2
https://doi.org/10.1021/ie9000053
https://doi.org/10.1016/j.compchemeng.2005.01.003
https://doi.org/10.1016/j.jenvman.2005.04.026
https://doi.org/10.1021/ie0604472
https://doi.org/10.1016/j.compchemeng.2006.02.008
https://doi.org/10.1016/S0098-1354(01)00671-8
https://doi.org/10.1287/mnsc.44.5.714

[70] C. Ning and F. You. “Data-driven decision making under uncertainty integrating

robust optimization with principal component analysis and kernel smoothing

methods”. In: Computers and Chemical Engineering 112 (2018), pp. 190–210.

doi: 10.1016/j.compchemeng.2018.02.007.

[71] D. R. Nonyane and T. Majozi. “Long term scheduling technique for wastewater

minimisation in multipurpose batch processes”. In: Applied Mathematical

Modelling 36.5 (2012), pp. 2142–2168. doi: 10.1016/J.APM.2011.08.007.

[72] J. M. Novas and G. P. Henning. “A comprehensive constraint programming

approach for the rolling horizon-based scheduling of automated wet-etch

stations”. In: Computers and Chemical Engineering 42 (2012), pp. 189–205. doi:

10.1016/j.compchemeng.2012.01.005.

[73] R. A.-V. Olaguíbel and J. T. Goerlich. “The project scheduling polyhedron:

Dimension, facets and lifting theorems”. In: European Journal of Operational

Research 67.2 (1993), pp. 204–220. doi: 10.1016/0377-2217(93)90062-R.

[74] O. Ősz and M. Hegyháti. “A novel combinatorial approach for the

resource-constrained scheduling problem”. In: VOCAL Optimization Conference:

Advanced Algorithms. Esztergom, Hungary, Dec. 2016.

[75] O. Ősz and M. Hegyháti. “Combinatorial approach for the multi-mode

resource-constrained project scheduling problem”. In: Joint EURO / ORSC /

ECCO Conference 2017 on Combinatorial Optimization. Koper, Slovenia, Mar.

2017.

[76] O. Ősz and M. Hegyháti. “Scheduling a forge with due dates and die

deterioration”. In: 16th Int’l Conference on Project Management and Scheduling.

PMS. Rome, Italy, Apr. 2018.

[77] O. Ősz, B. Kovács, and M. Hegyháti. “Combinatorial approach for the

scheduling of Automated Wet-etch Stations”. In: Veszprém Optimization

Conference: Advanced Algorithms and Annual Scientific Conference of the

Hungarian National Coordinating Center for Infocommunications (NIKK).

VOCAL/ASCONIKK. Veszprém, Hungary, Dec. 2014.

117

https://doi.org/10.1016/j.compchemeng.2018.02.007
https://doi.org/10.1016/J.APM.2011.08.007
https://doi.org/10.1016/j.compchemeng.2012.01.005
https://doi.org/10.1016/0377-2217(93)90062-R

[78] O. Ősz, B. Ferenczi, and M. Hegyháti. “Scheduling a forge with due dates and

die deterioration”. In: Annals of Operations Research (2019). doi:

10.1007/s10479-019-03336-6.

[79] O. Ősz, D. C. Y. Foo, and M. Hegyháti. “Minimizing Freshwater Usage in Batch

Process Scheduling: S-Graph Approach”. In: Process Integration and

Optimization for Sustainability (2020). doi: 10.1007/s41660-020-00142-7.

Number of citations: 1.

[80] O. Ősz and M. Hegyháti. “An S-graph based approach for multi-mode

resource-constrained project scheduling with time-varying resource capacities”.

In: Chemical Engineering Transactions 70 (2018), pp. 1165–1170. doi:

10.3303/CET1870195. Number of citations: 2.

[81] O. Ősz and M. Hegyháti. “Interlacing in cyclic scheduling”. In: 8th VOCAL

Optimization Conference: Advanced Algorithms Esztergom, Hungary, December

10-12, 2018 Short Papers. 2018, pp. 50–55.

[82] E. Oztemel and A. A. Selam. “Bees Algorithm for multi-mode,

resource-constrained project scheduling in molding industry”. In: Computers &

Industrial Engineering 112 (2017), pp. 187–196. doi: 10.1016/j.cie.2017.08.012.

[83] C. C. Pantelides. “Unified frameworks for optimal process planning and

scheduling”. In: Proceedings of the second international conference on foundations

of computer-aided process operations. Ed. by D. Rippin, J. C. Hale, and

J. F. Davis. 1994, pp. 253–274.

[84] M. E. Pfund, S. J. Mason, and J. W. Fowler. “Semiconductor Manufacturing

Scheduling and Dispatching”. In: Handbook of Production Scheduling. Ed. by

J. W. Herrmann. Boston, MA: Springer US, 2006, pp. 213–241. doi:

10.1007/0-387-33117-4_9.

[85] J. M. Pinto and I. E. Grossmann. “Assignment and sequencing models for the

scheduling of process systems”. In: Annals of Operations Research 81 (1998),

pp. 433–466.

[86] A. A. B. Pritsker, L. J. Waiters, and P. M. Wolfe. “Multiproject Scheduling with

Limited Resources: A Zero-One Programming Approach”. In: Management

Science 16.1 (1969), pp. 93–108. doi: 10.1287/mnsc.16.1.93.

118

https://doi.org/10.1007/s10479-019-03336-6
https://doi.org/10.1007/s41660-020-00142-7
https://doi.org/10.3303/CET1870195
https://doi.org/10.1016/j.cie.2017.08.012
https://doi.org/10.1007/0-387-33117-4_9
https://doi.org/10.1287/mnsc.16.1.93

[87] T. Samukawa and H. Suwa. “An Optimization of Energy-Efficiency in Machining

Manufacturing Systems Based on a Framework of Multi-Mode RCPSP”. In:

International Journal of Automation Technology 10.6 (2016), pp. 985–992. doi:

10.20965/ijat.2016.p0985.

[88] E. Sanmartí, F. Friedler, and L. Puigjaner. “Combinatorial technique for short

term scheduling of multipurpose batch plants based on schedule-graph

representation”. In: Computers & Chemical Engineering 22 (1998), S847–S850.

doi: 10.1016/S0098-1354(98)00163-X.

[89] E. Sanmartí, L. Puigjaner, T. Holczinger, and F. Friedler. “Combinatorial

framework for effective scheduling of multipurpose batch plants”. In: AIChE

Journal 48.11 (2002), pp. 2557–2570. doi: 10.1002/aic.690481115.

[90] G. Schilling and C. Pantelides. “A simple continuous-time process scheduling

formulation and a novel solution algorithm”. In: Computers & Chemical

Engineering 20 (1996), S1221–S1226. doi: 10.1016/0098-1354(96)00211-6.

[91] E. Seid and T. Majozi. “Optimization of energy and water use in multipurpose

batch plants using an improved mathematical formulation”. In: Chemical

Engineering Science 111 (2014), pp. 335–349. doi: 10.1016/j.ces.2014.02.036.

[92] M. Shaik and P. Mathur. “Generalization of Scheduling Models for Batch Plants

and Pipeless Plants”. In: Industrial and Engineering Chemistry Research 58.19

(2019), pp. 8195–8205. doi: 10.1021/acs.iecr.9b00106.

[93] C. Shang and F. You. “Distributionally robust optimization for planning and

scheduling under uncertainty”. In: Computers and Chemical Engineering 110

(2018), pp. 53–68. doi: 10.1016/j.compchemeng.2017.12.002.

[94] G. W. Shapiro and H. L. W. Nuttle. “Hoist Scheduling For A PCB Electroplating

Facility”. In: IIE Transactions 20.2 (1988), pp. 157–167. doi:

10.1080/07408178808966165.

[95] R. Smith. Chemical process design and integration. Chichester, West Sussex,

United Kingdom: John Wiley & Sons, Inc, 2016.

[96] F. B. Talbot. “Resource-Constrained Project Scheduling with Time-Resource

Tradeoffs: The Nonpreemptive Case”. In: Management Science 28.10 (1982),

pp. 1197–1210. doi: 10.1287/mnsc.28.10.1197.

119

https://doi.org/10.20965/ijat.2016.p0985
https://doi.org/10.1016/S0098-1354(98)00163-X
https://doi.org/10.1002/aic.690481115
https://doi.org/10.1016/0098-1354(96)00211-6
https://doi.org/10.1016/j.ces.2014.02.036
https://doi.org/10.1021/acs.iecr.9b00106
https://doi.org/10.1016/j.compchemeng.2017.12.002
https://doi.org/10.1080/07408178808966165
https://doi.org/10.1287/mnsc.28.10.1197

[97] L. Tang and P. Liu. “Flowshop scheduling problems with transportation or

deterioration between the batching and single machines”. In: Computers and

Industrial Engineering 56.4 (2009), pp. 1289–1295.

[98] R. Théry Hétreux, G. Hétreux, P. Floquet, and A. Leclercq. “The energy

Extended Resource Task Network, a general formalism for the modeling of

production systems: Application to waste heat valorization”. In: Energy 214

(2021), p. 118970. doi: https://doi.org/10.1016/j.energy.2020.118970.

[99] I. Uhlmann and E. Frazzon. “Production rescheduling review: Opportunities for

industrial integration and practical applications”. In: Journal of Manufacturing

Systems 49 (2018), pp. 186–193. doi: 10.1016/j.jmsy.2018.10.004.

[100] UN. Sustainable Development Goals. 2015. url:

https://un.org/sustainabledevelopment.

[101] UN General Assembly. International Decade for Action: Water for Sustainable

Development: 2018–2028. Tech. rep. RES/71/222 (7 February 2017), 2017.

[102] UNESCO. The United Nations World Water Development Report 2017:

Wastewater, The Untapped Resource. WWAP (United Nations World Water

Assessment Programme). Paris, 2017.

[103] UNICEF and WHO. Progress on household drinking water, sanitation and

hygiene 2000-2017. Special focus on inequalities. United Nations Children’s Fund

(UNICEF) and World Health Organization. New York, 2019.

[104] R. Uzsoy, C.-Y. Lee, and L. A. Martin-Vega. “A review of production planning

and scheduling models in the semiconductor industry part I: system

characteristics, performance evaluation and production planning”. In: IIE

transactions 24.4 (1992), pp. 47–60. doi: 10.1080/07408179208964233.

[105] Y. Wang and R. Smith. “Time pinch analysis”. In: Chemical Engineering

Research & Design 73.8 (1995), pp. 905–914.

[106] L. J. Zeballos, P. M. Castro, C. A. Méndez, and C. A. Meendez. “Integrated

Constraint Programming Scheduling Approach for Automated Wet-Etch Stations

in Semiconductor Manufacturing”. In: Industrial & Engineering Chemistry

Research 50.3 (2011), pp. 1705–1715. doi: 10.1021/ie1016199.

120

https://doi.org/https://doi.org/10.1016/j.energy.2020.118970
https://doi.org/10.1016/j.jmsy.2018.10.004
https://un.org/sustainabledevelopment
https://doi.org/10.1080/07408179208964233
https://doi.org/10.1021/ie1016199

[107] T. Zhang, Y. Wang, X. Jin, and S. Lu. “Integration of production planning and

scheduling based on RTN representation under uncertainties”. In: Algorithms 12.6

(2019). doi: 10.3390/a12060120.

[108] Z. Zhang and J. a. Xu. “A multi-mode resource-constrained project scheduling

model with bi-random coefficients for drilling grouting construction project”. In:

International Journal of Civil Engineering 11.1 (2013). url:

http://ijce.iust.ac.ir/article-1-699-en.html.

[109] C.-l. Zhao and H.-y. Tang. “Single machine scheduling with general

job-dependent aging effect and maintenance activities to minimize makespan”. In:

Applied Mathematical Modelling 34.3 (2010), pp. 837–841.

121

https://doi.org/10.3390/a12060120
http://ijce.iust.ac.ir/article-1-699-en.html

	Introduction
	Literature overview of modelling methods for scheduling
	Classification of scheduling problems
	Modeling scheduling problems with MILP
	Constraint Programming
	S-graph methodology
	Modeling schedules with S-graphs
	Algorithms for finding the optimal schedule

	Improved MILP models for scheduling wet-etch stations
	Problem definition
	Literature approaches
	Proposed model improvements
	Improving the model by Aguirre et al. (2013)
	Extending the model by Castro et al. (2012)

	Computational tests
	Summarizing statements

	S-graph approach for RCPSP and its variants
	Problem definitions
	Literature approaches
	Proposed S-graph solution method
	Solution for the single-mode problem
	Solution for the multi-mode variant
	Solution for time-varying resource capacities

	Computational tests
	Single-mode results
	Multi-mode results

	Summarizing statements

	Scheduling a forge with die deterioration
	Related literature
	Problem definition
	Forging
	Heat treatment
	Preparation and machining
	Flexibility, objective and cost evaluation

	Proposed MILP model
	Defining the discrete uniform time grid
	Forging and heat treatment processes
	Material balance
	Objective
	Model improvements

	Computational results
	Illustrative example
	Performance analysis

	Summarizing statements
	Nomenclature

	S-graph approach for minimizing freshwater usage
	Problem definition
	Literature summary
	Proposed approach
	New branching method
	Demonstrative example

	Empirical validation
	Example 1
	Example 2

	Summarizing statements

	Conclusions and future prospects
	Bibliography

